Eddies Observed by Argo Floats. Part I: Eddy Transport in the Upper 1000 dbar

Katsuro Katsumata Research and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Katsuro Katsumata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Argo floats measure horizontal current velocities at the parking depth and vertical profiles of temperature and salinity. The data are sufficient for simultaneous estimates of velocities and vertical displacements of isopycnal surfaces. More than 980 000 pairs of observations of current velocity and water column stratification were used to calculate eddy transport above 1000 dbar and its uncertainty based on the temporal-residual-mean framework. Eddy transports larger than 1.0 m2 s−1 were found in the North Atlantic, western North Pacific, and Southern Oceans. The eddy transport T had components perpendicular and parallel to the density contours at 1000 dbar. In the midlatitude oceans, eddy transport was weaker (<0.5 m2 s−1), mostly perpendicular to the density contours, and equatorward. A large area of northward was found in the south Indian Ocean; analysis of velocity and thickness perturbations suggested that this transport was a northward intrusion of Antarctic Intermediate Water. In the midlatitude oceans and in most of the southern part of the Antarctic Circumpolar Current (ACC), was generally upgradient in density on 1000 dbar. Downgradient was found along the North Atlantic Current and Kuroshio Extension as well as in the northern part of the ACC. Zonally integrated meridional transport was poleward at latitudes higher than approximately 40° and equatorward at lower latitudes. The quasi-Stokes or Gent–McWilliams diffusivity coefficient was on the order of 1000 m2 s−1 but was associated with such large uncertainty that it was statistically indistinguishable from zero, except at midlatitudes in the Southern Hemisphere.

Corresponding author address: Katsuro Katsumata, RCGC, JAMSTEC, 2-15 Natsushima, Yokosuka, Japan. E-mail: k.katsumata@jamstec.go.jp

Abstract

Argo floats measure horizontal current velocities at the parking depth and vertical profiles of temperature and salinity. The data are sufficient for simultaneous estimates of velocities and vertical displacements of isopycnal surfaces. More than 980 000 pairs of observations of current velocity and water column stratification were used to calculate eddy transport above 1000 dbar and its uncertainty based on the temporal-residual-mean framework. Eddy transports larger than 1.0 m2 s−1 were found in the North Atlantic, western North Pacific, and Southern Oceans. The eddy transport T had components perpendicular and parallel to the density contours at 1000 dbar. In the midlatitude oceans, eddy transport was weaker (<0.5 m2 s−1), mostly perpendicular to the density contours, and equatorward. A large area of northward was found in the south Indian Ocean; analysis of velocity and thickness perturbations suggested that this transport was a northward intrusion of Antarctic Intermediate Water. In the midlatitude oceans and in most of the southern part of the Antarctic Circumpolar Current (ACC), was generally upgradient in density on 1000 dbar. Downgradient was found along the North Atlantic Current and Kuroshio Extension as well as in the northern part of the ACC. Zonally integrated meridional transport was poleward at latitudes higher than approximately 40° and equatorward at lower latitudes. The quasi-Stokes or Gent–McWilliams diffusivity coefficient was on the order of 1000 m2 s−1 but was associated with such large uncertainty that it was statistically indistinguishable from zero, except at midlatitudes in the Southern Hemisphere.

Corresponding author address: Katsuro Katsumata, RCGC, JAMSTEC, 2-15 Natsushima, Yokosuka, Japan. E-mail: k.katsumata@jamstec.go.jp
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Aoki, K., S. Minobe, Y. Tanimoto, and Y. Sasai, 2013: Southward eddy heat transport occurring along southern flanks of the Kuroshio Extension and the Gulf Stream in a 1/10° global ocean general circulation model. J. Phys. Oceanogr., 43, 18991910, doi:10.1175/JPO-D-12-0223.1.

    • Search Google Scholar
    • Export Citation
  • Böning, C., 1988: Characteristics of particle dispersion in the North Atlantic: An alternative interpretation of SOFAR float results. Deep-Sea Res., 35A, 13791385, doi:10.1016/0198-0149(88)90089-1.

    • Search Google Scholar
    • Export Citation
  • Carval, T., and Coauthors, 2015: Argo user’s manual V3.2. Accessed 20 October 2016, doi:10.13155/29825.

  • Chiswell, S. M., 2013: Lagrangian time scales and eddy diffusivity at 1000 m compared to the surface in the South Pacific and Indian Oceans. J. Phys. Oceanogr., 43, 27182732, doi:10.1175/JPO-D-13-044.1.

    • Search Google Scholar
    • Export Citation
  • Cotroneo, Y., G. Budillon, G. Fusco, and G. Spezie, 2013: Cold core eddies and fronts of the Antarctic Circumpolar Current south of New Zealand from in situ and satellite data. J. Geophys. Res. Oceans, 118, 26532666, doi:10.1002/jgrc.20193.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571, doi:10.1016/S0198-0149(12)80023-9.

  • Davis, R. E., 1998: Preliminary results from directly measuring middepth circulation in the tropical and South Pacific. J. Geophys. Res., 103, 24 61924 639, doi:10.1029/98JC01913.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683707, doi:10.1175/JPO2702.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, doi:10.1029/2006jc004051.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648.

  • Feng, M., S. Wijffels, J. S. Godfrey, and G. Meyers, 2005: Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35, 964975, doi:10.1175/JPO2730.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, doi:10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35/2004, 52 pp.

  • Gray, A. R., and S. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, doi:10.1175/JPO-D-12-0206.1.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., S. Minato, and N. Shikama, 2006: Seasonal temperature variation below the thermocline detected by Argo floats. Geophys. Res. Lett., 33, L13604, doi:10.1029/2006GL026070.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, Y., Y. Takatsuki, K. Mizuno, N. Shikama, and K. Takeuchi, 2001: Estimation of drifting velocity and error at parking depth for Argo float. JAMSTEC-R, 44, 8189.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katsumata, K., and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at the parking level. J. Oceanogr., 66, 553569, doi:10.1007/s10872-010-0046-4.

    • Search Google Scholar
    • Export Citation
  • Koltermann, K., V. Gouretski, and K. Jancke, 2011: Atlantic Ocean. Vol. 3, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), International WOCE Project Office, 174 pp.

  • Lebedev, K., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp.

  • Liu, C., A. Köhl, and D. Stammer, 2012: Adjoint-based estimation of eddy-induced tracer mixing parameters in the global ocean. J. Phys. Oceanogr., 42, 11861206, doi:10.1175/JPO-D-11-0162.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, doi:10.1175/1520-0485-32.9.2425.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, doi:10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

  • McDougall, T. J., 1998: Three-dimensional residual-mean theory. Ocean Modeling and Parameterization, E. P. Chassignet and J. Verron, Eds., Springer, 269–302.

  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J.-P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, doi:10.1175/JTECH-D-12-00073.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and J. L. Bullister, 1999: A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res. I, 46, 14171454, doi:10.1016/S0967-0637(99)00013-8.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, doi:10.1038/nclimate2872.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and R. Morrow, 2008: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, doi:10.1175/2009JPO4291.1.

    • Search Google Scholar
    • Export Citation
  • Scharffenberg, M. G., and D. Stammer, 2010: Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data. J. Geophys. Res., 115, C02008, doi:10.1029/2008JC005242.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, doi:10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vollmer, L., and C. Eden, 2013: A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Modell., 72, 198209, doi:10.1016/j.ocemod.2013.09.006.

    • Search Google Scholar
    • Export Citation
  • Yim, B. Y., Y. Noh, B. Qiu, S. H. You, and J. H. Yoon, 2010: The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM. J. Phys. Oceanogr., 40, 340353, doi:10.1175/2009JPO4243.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 564 194 76
PDF Downloads 381 83 6