Ocean Convective Available Potential Energy. Part I: Concept and Calculation

Zhan Su Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Zhan Su in
Current site
Google Scholar
PubMed
Close
,
Andrew P. Ingersoll Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Andrew P. Ingersoll in
Current site
Google Scholar
PubMed
Close
,
Andrew L. Stewart Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
, and
Andrew F. Thompson Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermobaric convection (type II convection) and thermobaric cabbeling (type III convection) might substantially contribute to vertical mixing, vertical heat transport, and deep-water formation in the World Ocean. However, the extent of this contribution remains poorly constrained. The concept of ocean convective available potential energy (OCAPE), the thermobaric energy source for type II and type III convection, is introduced to improve the diagnosis and prediction of these convection events. OCAPE is analogous to atmospheric CAPE, which is a key energy source for atmospheric moist convection and has long been used to forecast moist convection. OCAPE is the potential energy (PE) stored in an ocean column arising from thermobaricity, defined as the difference between the PE of the ocean column and its minimum possible PE under adiabatic vertical parcel rearrangements. An ocean column may be stably stratified and still have nonzero OCAPE. The authors present an efficient strategy for computing OCAPE accurately for any given column of seawater. They further derive analytical expressions for OCAPE for approximately two-layer ocean columns that are widely observed in polar oceans. This elucidates the dependence of OCAPE on key physical parameters. Hydrographic profiles from the winter Weddell Sea are shown to contain OCAPE (0.001–0.01 J kg−1), and scaling analysis suggests that OCAPE may be substantially enhanced by wintertime surface buoyancy loss. The release of this OCAPE may substantially contribute to the kinetic energy of deep convection in polar oceans.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: zssu@caltech.edu

Abstract

Thermobaric convection (type II convection) and thermobaric cabbeling (type III convection) might substantially contribute to vertical mixing, vertical heat transport, and deep-water formation in the World Ocean. However, the extent of this contribution remains poorly constrained. The concept of ocean convective available potential energy (OCAPE), the thermobaric energy source for type II and type III convection, is introduced to improve the diagnosis and prediction of these convection events. OCAPE is analogous to atmospheric CAPE, which is a key energy source for atmospheric moist convection and has long been used to forecast moist convection. OCAPE is the potential energy (PE) stored in an ocean column arising from thermobaricity, defined as the difference between the PE of the ocean column and its minimum possible PE under adiabatic vertical parcel rearrangements. An ocean column may be stably stratified and still have nonzero OCAPE. The authors present an efficient strategy for computing OCAPE accurately for any given column of seawater. They further derive analytical expressions for OCAPE for approximately two-layer ocean columns that are widely observed in polar oceans. This elucidates the dependence of OCAPE on key physical parameters. Hydrographic profiles from the winter Weddell Sea are shown to contain OCAPE (0.001–0.01 J kg−1), and scaling analysis suggests that OCAPE may be substantially enhanced by wintertime surface buoyancy loss. The release of this OCAPE may substantially contribute to the kinetic energy of deep convection in polar oceans.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: zssu@caltech.edu
Save
  • Adkins, J. F., A. P. Ingersoll, and C. Pasquero, 2005: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev., 24, 581594, doi:10.1016/j.quascirev.2004.11.005.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 1999a: Open-ocean deep convection due to thermobaricity: 1. Scaling argument. J. Geophys. Res., 104, 52255234, doi:10.1029/1998JC900058.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 1999b: Open-ocean deep convection due to thermobaricity: 2. Numerical experiments. J. Geophys. Res., 104, 52355249, doi:10.1029/1998JC900062.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2006: Thermobaric deep convection, baroclinic instability, and their roles in vertical heat transport around Maud Rise in the Weddell Sea. J. Geophys. Res., 111, C09027, doi:10.1029/2005JC003284.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2007: Restriction of convective depth in the Weddell Sea. Geophys. Res. Lett., 34, L10610, doi:10.1029/2007GL029295.

  • Akitomo, K., 2011: Two types of thermobaric deep convection possible in the Greenland Sea. J. Geophys. Res., 116, C08012, doi:10.1029/2010JC006635.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., K. Tanaka, T. Awaji, and N. Imasato, 1995: Deep convection in a lake triggered by wind: Two-dimensional numerical experiments with a nonhydrostatic model. J. Oceanogr., 51, 171185, doi:10.1007/BF02236523.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., K. W. Nicholls, and L. Boehme, 2013: Wintertime water mass modification near an Antarctic Ice Front. J. Phys. Oceanogr., 43, 359365, doi:10.1175/JPO-D-12-0186.1.

    • Search Google Scholar
    • Export Citation
  • Bertsekas, D. P., 1988: The auction algorithm: A distributed relaxation method for the assignment problem. Ann. Oper. Res., 14, 105123, doi:10.1007/BF02186476.

    • Search Google Scholar
    • Export Citation
  • Burkard, R. E., M. Dell’Amico, and S. Martello, 2009: Assignment Problems. SIAM, 382 pp.

  • Carmack, E. C., 1979: Combined influence of inflow and lake temperatures on spring circulation in a riverine lake. J. Phys. Oceanogr., 9, 422434, doi:10.1175/1520-0485(1979)009<0422:CIOIAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., W. J. Williams, S. L. Zimmermann, and F. A. McLaughlin, 2012: The Arctic Ocean warms from below. Geophys. Res. Lett., 39, L07604, doi:10.1029/2012GL050890.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and J. C. Gascard, 1983: The formation of Labrador Sea water. Part I: Large-scale processes. J. Phys. Oceanogr., 13, 17641778, doi:10.1175/1520-0485(1983)013<1764:TFOLSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., and E. D. Skyllingstad, 1996: An ocean large-eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res., 101, 10951110, doi:10.1029/95JC02828.

    • Search Google Scholar
    • Export Citation
  • Derigs, U., 1985: The shortest augmenting path method for solving assignment problems? Motivation and computational experience. Ann. Oper. Res., 4, 57102, doi:10.1007/BF02022037.

    • Search Google Scholar
    • Export Citation
  • De Steur, L., D. M. Holland, R. D. Muench, and M. G. McPhee, 2007: The warm-water Halo around Maud Rise: Properties, dynamics and impact. Deep-Sea Res. Oceanogr. Abstr., 54, 871896, doi:10.1016/j.dsr.2007.03.009.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., 2003: A new extended Gibbs thermodynamic potential of seawater. Prog. Oceanogr., 58, 43114, doi:10.1016/S0079-6611(03)00088-0.

    • Search Google Scholar
    • Export Citation
  • Garwood, R. W., Jr., S. M. Isakari, and P. C. Gallacher, 1994: Thermobaric convection. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 199–209.

  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600612, doi:10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1991: Two stable modes of Southern Ocean winter stratification. Deep Convection and Deep Water Formation in the Oceans, C. Chu and J. C. Gascard, Eds., Elsevier Oceanography Series, Vol. 57, 17–35, doi:10.1016/S0422-9894(08)70058-8.

  • Gordon, A. L., and B. A. Huber, 1990: Southern Ocean winter mixed layer. J. Geophys. Res., 95, 11 65511 672, doi:10.1029/JC095iC07p11655.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and B. A. Huber, 1995: Warm Weddell deep water west of Maud Rise. J. Geophys. Res., 100, 13 74713 753, doi:10.1029/95JC01361.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., A. H. Orsi, R. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009: Western Ross Sea continental slope gravity currents. Deep-Sea Res. II, 56, 796817, doi:10.1016/j.dsr2.2008.10.037.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J. J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126, 16851710, doi:10.1002/qj.49712656607.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2005: Thermobaric cabbeling over Maud Rise: Theory and large eddy simulation. Prog. Oceanogr., 67, 186244, doi:10.1016/j.pocean.2004.12.001.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., E. L. Steffen, R. W. Garwood, and E. A. D’Asaro, 2002: Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results. J. Phys. Oceanogr., 32, 493510, doi:10.1175/1520-0485(2002)032<0493:FLFILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2015: Finding the minimum potential energy state by adiabatic parcel rearrangements with a nonlinear equation of state: An exact solution in polynomial time. J. Phys. Oceanogr., 45, 18431857, doi:10.1175/JPO-D-14-0174.1.

    • Search Google Scholar
    • Export Citation
  • Hoppema, M., E. Fahrbach, G. Rohardt, and A. Wisotzki, 2006: Warm events and ice cover near Maud Rise, Weddell Sea. Geophysical Research Abstracts, Vol. 8, Abstract 04398. [Available online at http://meetings.copernicus.org/www.cosis.net/abstracts/EGU06/04398/EGU06-J-04398.pdf.]

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, doi:10.1357/0022240053693770.

  • Ingersoll, A. P., 2005: Boussinesq and anelastic approximations revisited: Potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 13591369, doi:10.1175/JPO2756.1.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies, 2006: Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Oceanic Technol., 23, 17091728, doi:10.1175/JTECH1946.1.

    • Search Google Scholar
    • Export Citation
  • Krokhmal, P. A., and P. M. Pardalos, 2009: Random assignment problems. Eur. J. Oper. Res., 194, 117, doi:10.1016/j.ejor.2007.11.062.

  • Kuhn, H. W., 1955: The Hungarian method for the assignment problem. Nav. Res. Logist., 2, 8397, doi:10.1002/nav.3800020109.

  • Labeyrie, L. D., J. C. Duplessy, J. Duprat, A. Juillet-Leclerc, J. Moyes, E. Michel, N. Kallel, and N. J. Shackleton, 1992: Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sci. Rev., 11, 401413, doi:10.1016/0277-3791(92)90022-Z.

    • Search Google Scholar
    • Export Citation
  • Lange, M. A., S. F. Ackley, P. Wadhams, G. S. Dieckmann, and H. Eicken, 1989: Development of sea ice in the Weddell Sea. Ann. Glaciol., 12, 9296.

    • Search Google Scholar
    • Export Citation
  • Lawler, E. L., 1976: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 374 pp.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436439, doi:10.1038/382436a0.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Martello, S., and P. Toth, 1987: Linear assignment problems. Surveys in Combinatorial Optimization, S. Martello et al., Eds., North-Holland Mathematics Studies, Vol. 132, Elsevier, 259282.

  • Martello, S., D. Pisinger, and D. Vigo, 2000: The three-dimensional bin packing problem. Oper. Res., 48, 256267, doi:10.1287/opre.48.2.256.12386.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2000: Marginal thermobaric stability in the ice-covered upper ocean over Maud Rise. J. Phys. Oceanogr., 30, 27102722, doi:10.1175/1520-0485(2000)030<2710:MTSITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2003: Is thermobaricity a major factor in Southern Ocean ventilation? Antarct. Sci., 15, 153160, doi:10.1017/S0954102003001159.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., and Coauthors, 1996: The Antarctic zone flux experiment. Bull. Amer. Meteor. Soc., 77, 12211232, doi:10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Reddy, J. N., 2002: Energy Principles and Variational Methods in Applied Mechanics. 2nd ed. John Wiley and Sons, 592 pp.

  • Reid, R. O., B. A. Elliott, and D. B. Olson, 1981: Available potential energy: A clarification. J. Phys. Oceanogr., 11, 1529, doi:10.1175/1520-0485(1981)011<0015:APEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I., J. C. King, and T. Markus, 2002: Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget. J. Geophys. Res., 107, doi:10.1029/2000JC000720.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. International Geophysics Series, Vol. 61, Academic Press, 627 pp.

  • Schmid, M., N. M. Budnev, N. G. Granin, M. Sturm, M. Schurter, and A. Wüest, 2008: Lake Baikal deepwater renewal mystery solved. Geophys. Res. Lett., 35, L09605, doi:10.1029/2008GL033223.

    • Search Google Scholar
    • Export Citation
  • Schott, F., and K. D. Leaman, 1991: Observations with moored acoustic Doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr., 21, 558574, doi:10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Visbeck, and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during the winter of 1988–1989. J. Geophys. Res., 98, 14 40114 421, doi:10.1029/93JC00658.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson , 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, A. L. Stewart, and A. F. Thompson, 2016: Ocean convective available potential energy. Part II: Energetics of thermobaric convection and thermobaric cabbeling. J. Phys. Oceanogr., 46, 10971115, doi:10.1175/JPO-D-14-0156.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., V. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser, 2003: Deep convection and brine rejection in the Japan Sea. Geophys. Res. Lett., 30, 1159, doi:10.1029/2002GL016451.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., P. Tishchenko, V. Luchin, A. Nedashkovskiy, S. Sagalaev, D. J. Kang, M. Warner, and D. H. Min, 2004: Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Prog. Oceanogr., 61, 277348, doi:10.1016/j.pocean.2004.06.011.

    • Search Google Scholar
    • Export Citation
  • Thiagarajan, N., A. V. Subhas, J. R. Southon, J. M. Eiler, and J. F. Adkins, 2014: Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature, 511, 7578, doi:10.1038/nature13472.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754, doi:10.1126/science.1112551.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., J. Holfort, E. Hansen, and J. P. Wilkinson, 2002: A deep convective chimney in the winter Greenland Sea. Geophys. Res. Lett., 29, doi:10.1029/2001GL014306.

    • Search Google Scholar
    • Export Citation
  • Weiss, R. F., E. C. Carmack, and V. M. Koropalov, 1991: Deep-water renewal and biological production in Lake Baikal. Nature, 349, 665669, doi:10.1038/349665a0.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2010: Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394400, doi:10.1175/2009JPO4294.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. J. Geophys. Res., 114, D07109, doi:10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 716 215 18
PDF Downloads 561 149 13