• Adkins, J. F., , A. P. Ingersoll, , and C. Pasquero, 2005: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev., 24, 581594, doi:10.1016/j.quascirev.2004.11.005.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 1999a: Open-ocean deep convection due to thermobaricity: 1. Scaling argument. J. Geophys. Res., 104, 52255234, doi:10.1029/1998JC900058.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 1999b: Open-ocean deep convection due to thermobaricity: 2. Numerical experiments. J. Geophys. Res., 104, 52355249, doi:10.1029/1998JC900062.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2005: Numerical study of baroclinic instability associated with thermobaric deep convection at high latitudes: Idealized cases. Deep-Sea Res. Oceanogr. Abstr., 52, 937957, doi:10.1016/j.dsr.2004.12.010.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2006: Thermobaric deep convection, baroclinic instability, and their roles in vertical heat transport around Maud Rise in the Weddell Sea. J. Geophys. Res., 111, C09027, doi:10.1029/2005JC003284.

  • Akitomo, K., 2007: Restriction of convective depth in the Weddell Sea. Geophys. Res. Lett., 34, L10610, doi:10.1029/2007GL029295.

  • Arakawa, A., 1997: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 135, 103114, doi:10.1006/jcph.1997.5697.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., 1979: Combined influence of inflow and lake temperatures on spring circulation in a riverine lake. J. Phys. Oceanogr., 9, 422434, doi:10.1175/1520-0485(1979)009<0422:CIOIAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., , W. J. Williams, , S. L. Zimmermann, , and F. A. McLaughlin, 2012: The Arctic Ocean warms from below. Geophys. Res. Lett., 39, L07604, doi:10.1029/2012GL050890.

    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., , and E. D. Skyllingstad, 1996: An ocean large-eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res., 101, 10951110, doi:10.1029/95JC02828.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Garwood, R. W., Jr., , S. M. Isakari, , and P. C. Gallacher, 1994: Thermobaric convection. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 199–209.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gordon, A. L., , and B. A. Huber, 1990: Southern Ocean winter mixed layer. J. Geophys. Res., 95, 11 65511 672, doi:10.1029/JC095iC07p11655.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , J. J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126, 16851710, doi:10.1002/qj.49712656607.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 1999: Numerical simulation of deep convection and the response of drifters in the Labrador Sea. Ph.D. thesis, University of California, Santa Cruz, 367 pp.

  • Harcourt, R. R., 2005: Thermobaric cabbeling over Maud Rise: Theory and large eddy simulation. Prog. Oceanogr., 67, 186244, doi:10.1016/j.pocean.2004.12.001.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., , and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, doi:10.1175/2007JPO3842.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., , E. L. Steffen, , R. W. Garwood, , and E. A. D’Asaro, 2002: Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results. J. Phys. Oceanogr., 32, 493510, doi:10.1175/1520-0485(2002)032<0493:FLFILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2014: Energetics of lateral eddy diffusion/advection: Part I. Thermodynamics and energetics of vertical eddy diffusion. Acta Oceanol. Sin., 33, 118, doi:10.1007/s13131-014-0409-6.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 2005: Boussinesq and anelastic approximations revisited: Potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 13591369, doi:10.1175/JPO2756.1.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.].

  • Jackett, D. R., , T. J. McDougall, , R. Feistel, , D. G. Wright, , and S. M. Griffies, 2006: Algorithms for density, potential temperature, Conservative Temperature, and the freezing temperature of seawater. J. Atmos. Oceanic Technol., 23, 17091728, doi:10.1175/JTECH1946.1.

    • Search Google Scholar
    • Export Citation
  • Jones, H., , and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27, 22762287, doi:10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landau, L. D., , and E. M. Lifshitz, 1959: Fluid Mechanics.Course of Theoretical Physics, Vol. 6, Pergamon Press, 536 pp.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2000: Marginal thermobaric stability in the ice-covered upper ocean over Maud Rise. J. Phys. Oceanogr., 30, 27102722, doi:10.1175/1520-0485(2000)030<2710:MTSITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2003: Is thermobaricity a major factor in Southern Ocean ventilation? Antarct. Sci., 15, 153160, doi:10.1017/S0954102003001159.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., and et al. , 1996: The Antarctic Zone Flux Experiment. Bull. Amer. Meteor. Soc., 77, 12211232, doi:10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., , S. A. Teukolsky, , W. T. Vetterling, , and B. P. Flannery, 2007: Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press, 1256 pp.

  • Radko, T., , A. Bulters, , J. D. Flanagan, , and J.-M. Campin, 2014: Double-diffusive recipes. Part I: Large-scale dynamics of thermohaline staircases. J. Phys. Oceanogr., 44, 12691284, doi:10.1175/JPO-D-13-0155.1.

    • Search Google Scholar
    • Export Citation
  • Reddy, J. N., 2002: Energy Principles and Variational Methods in Applied Mechanics.Wiley, 592 pp.

  • Schmid, M., , N. M. Budnev, , N. G. Granin, , M. Sturm, , M. Schurter, , and A. Wüest, 2008: Lake Baikal deepwater renewal mystery solved. Geophys. Res. Lett., 35, L09605, doi:10.1029/2008GL033223.

    • Search Google Scholar
    • Export Citation
  • Su, Z., , A. L. Stewart, , and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., , A. P. Ingersoll, , A. L. Stewart, , and A. F. Thompson, 2016: Ocean convective available potential energy. Part I: Concept and calculation. J. Phys. Oceanogr., 46, 10811096.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754, doi:10.1126/science.1112551.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids.Cambridge University Press, 367 pp.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation.Cambridge University Press, 745 pp.

  • Weiss, R. F., , E. C. Carmack, , and V. M. Koropalov, 1991: Deep-water renewal and biological production in Lake Baikal. Nature, 349, 665669, doi:10.1038/349665a0.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2010: Dynamic enthalpy, Conservative Temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394400, doi:10.1175/2009JPO4294.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. J. Geophys. Res., 114, D07109, doi:10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 6
PDF Downloads 39 39 5

Ocean Convective Available Potential Energy. Part II: Energetics of Thermobaric Convection and Thermobaric Cabbeling

View More View Less
  • 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
  • | 2 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 3 Environmental Science and Engineering, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The energetics of thermobaricity- and cabbeling-powered deep convection occurring in oceans with cold freshwater overlying warm salty water are investigated here. These quasi-two-layer profiles are widely observed in wintertime polar oceans. The key diagnostic is the ocean convective available potential energy (OCAPE), a concept introduced in a companion piece to this paper (Part I). For an isolated ocean column, OCAPE arises from thermobaricity and is the maximum potential energy (PE) that can be converted into kinetic energy (KE) under adiabatic vertical parcel rearrangements. This study explores the KE budget of convection using two-dimensional numerical simulations and analytical estimates. The authors find that OCAPE is a principal source for KE. However, the complete conversion of OCAPE to KE is inhibited by diabatic processes. Further, this study finds that diabatic processes produce three other distinct contributions to the KE budget: (i) a sink of KE due to the reduction of stratification by vertical mixing, which raises water column’s center of mass and thus acts to convert KE to PE; (ii) a source of KE due to cabbeling-induced shrinking of the water column’s volume when water masses with different temperatures are mixed, which lowers the water column’s center of mass and thus acts to convert PE into KE; and (iii) a reduced production of KE due to diabatic energy conversion of the KE convertible part of the PE to the KE inconvertible part of the PE. Under some simplifying assumptions, the authors also propose a theory to estimate the maximum depth of convection from an energetic perspective. This study provides a potential basis for improving the convection parameterization in ocean models.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: zssu@caltech.edu

Abstract

The energetics of thermobaricity- and cabbeling-powered deep convection occurring in oceans with cold freshwater overlying warm salty water are investigated here. These quasi-two-layer profiles are widely observed in wintertime polar oceans. The key diagnostic is the ocean convective available potential energy (OCAPE), a concept introduced in a companion piece to this paper (Part I). For an isolated ocean column, OCAPE arises from thermobaricity and is the maximum potential energy (PE) that can be converted into kinetic energy (KE) under adiabatic vertical parcel rearrangements. This study explores the KE budget of convection using two-dimensional numerical simulations and analytical estimates. The authors find that OCAPE is a principal source for KE. However, the complete conversion of OCAPE to KE is inhibited by diabatic processes. Further, this study finds that diabatic processes produce three other distinct contributions to the KE budget: (i) a sink of KE due to the reduction of stratification by vertical mixing, which raises water column’s center of mass and thus acts to convert KE to PE; (ii) a source of KE due to cabbeling-induced shrinking of the water column’s volume when water masses with different temperatures are mixed, which lowers the water column’s center of mass and thus acts to convert PE into KE; and (iii) a reduced production of KE due to diabatic energy conversion of the KE convertible part of the PE to the KE inconvertible part of the PE. Under some simplifying assumptions, the authors also propose a theory to estimate the maximum depth of convection from an energetic perspective. This study provides a potential basis for improving the convection parameterization in ocean models.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: zssu@caltech.edu
Save