• Aagaard, K., , A. Foldvik, , and S. R. Hillman, 1987: The West Spitbergen Current: Disposition and water mass transformation. J. Geophys. Res., 92, 37783784, doi:10.1029/JC092iC04p03778.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , E. Dunn-Sigoin, , G. Masato, , and T. Woolling, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, doi:10.1002/2013GL058745.

    • Search Google Scholar
    • Export Citation
  • Berge, J., , G. Johnsen, , F. Nilsen, , B. Gulliksen, , and D. Slagstad, 2005: Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar. Ecol. Prog. Ser., 303, 167175, doi:10.3354/meps303167.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., 1982: Fluctuations in Northern Hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808823, doi:10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christoffersen, P., , R. I. Mugford, , K. J. Heywood, , I. Joughin, , J. A. Dowdeswell, , J. P. M. Syvitski, , A. Luckman, , and T. J. Benham, 2011: Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5, 701714, doi:10.5194/tc-5-701-2011.

    • Search Google Scholar
    • Export Citation
  • Cottier, F., , F. Nilsen, , M. Inall, , S. Gerland, , V. Tverberg, , and H. Svendsen, 2007: Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys. Res. Lett., 34, L10607, doi:10.1029/2007GL029948.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Førland, E. J., , R. Benestad, , I. Hanssen-Bauer, , J. E. Haugen, , and T. E. Skaugen, 2011: Temperature and precipitation development at Svalbard 1900–2100. Adv. Meteor., 2011, 89 3790, doi:10.1155/2011/893790.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2012: Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., , P. Rhines, , and D. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659, doi:10.1126/science.1205683.

    • Search Google Scholar
    • Export Citation
  • Hegseth, E. N., , and V. Tverberg, 2013: Effect of Atlantic water inflow on the timing of the phytoplankton spring bloom in a high arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst., 113–114, 94105, doi:10.1016/j.jmarsys.2013.01.003.

    • Search Google Scholar
    • Export Citation
  • Helland-Hansen, B., , and F. Nansen, 1909: The Norwegian Sea: Its physical oceanography based upon the Norwegian Researches 1900–1904. Rep. on Norwegian Fishery and Marine-Investigations, Vol. II, No. 2, 359 pp. [Available online at http://hdl.handle.net/11250/114874.]

  • Holland, D. M., , R. H. Thomas, , B. De Young, , M. H. Ribergaard, , and B. Lyberth, 2008: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664, doi:10.1038/ngeo316.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., , T. Murray, , F. R. Cottier, , K. Scharrer, , T. J. Boyd, , K. J. Heywood, , and S. L. Bevan, 2014: Oceanic heat delivery via Kangerdlugssuaq fjord to the south-east Greenland ice sheet. J. Geophys. Res. Oceans, 119, 631645, doi:10.1002/2013JC009295.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. H., , F. Straneo, , and D. A. Sutherland, 2014: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci., 7, 503508, doi:10.1038/ngeo2186.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., , R. Macnab, , L. Mayer, , R. Anderson, , M. Edwards, , J. Hatzky, , H. W. Schenke, , and P. Johnson, 2008: An improved bathymetric portrayal of the arctic ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602, doi:10.1029/2008GL033520.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., 1983: Topographic controlled flow around a deep trough transecting the shelf off Kodiak Island, Alaska. J. Phys. Oceanogr., 13, 139146, doi:10.1175/1520-0485(1983)013<0139:TCFAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeng, H., 1991: Features of the physical oceanographic conditions of the Barents Sea. Polar Res., 10, 518, doi:10.1111/j.1751-8369.1991.tb00630.x.

    • Search Google Scholar
    • Export Citation
  • Luckman, A., , D. I. Benn, , F. Cottier, , S. Bevan, , F. Nilsen, , and M. Inall, 2015: Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat. Commun., 6, 8566, doi:10.1038/ncomms9566.

    • Search Google Scholar
    • Export Citation
  • Lydersen, C., and et al. , 2014: The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst., 129, 452471, doi:10.1016/j.jmarsys.2013.09.006.

    • Search Google Scholar
    • Export Citation
  • Manley, T., 1995: Branching of Atlantic Water within the Greenland-Spitsbergen Passage: An estimate of recirculation. J. Geophys. Res., 100, 20 62720 634, doi:10.1029/95JC01251.

    • Search Google Scholar
    • Export Citation
  • Nilsen, F., , B. Gjevik, , and U. Schauer, 2006: Cooling of the West Spitsbergen Current: Isopycnal diffusion by topographic vorticity waves. J. Geophys. Res., 111, C08012, doi:10.1029/2005JC002991.

    • Search Google Scholar
    • Export Citation
  • Nilsen, F., , F. Cottier, , R. Skogseth, , and S. Mattsson, 2008: Fjord-shelf exchanges controlled by ice and brine production: The interannual variation if Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res., 28, 18381853, doi:10.1016/j.csr.2008.04.015.

    • Search Google Scholar
    • Export Citation
  • Nilsen, J. E. Ø., , and F. Nilsen, 2007: The Atlantic Water flow along the Vøring Plateau: Detecting frontal structures in oceanic station time series. Deep-Sea Res. I, 54, 297319, doi:10.1016/j.dsr.2006.12.012.

    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., , L. H. Smedsrud, , R. B. Ingvaldsen, , and F. Nilsen, 2014: Loss of sea ice during winter north of Svalbard. Tellus, 66A, doi:10.3402/tellusa.v66.23933.

    • Search Google Scholar
    • Export Citation
  • Pavlov, A. K., , V. Tverberg, , B. V. Ivanov, , F. Nilsen, , S. Falk-Petersen, , and M. A. Granskog, 2013: Warming of Atlantic water in two west Spitsbergen fjords over the last century (1912–2009). Polar Res., 32, 11206, doi:10.3402/polar.v32i0.11206.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

  • Proudman, J., 1916: On the motion of solids in a liquid possessing vorticity. Proc. Roy. Soc. London, A92, 408424, doi:10.1098/rspa.1916.0026.

    • Search Google Scholar
    • Export Citation
  • Reistad, M., , and K. Iden, 1998: Updating, correction and evaluation of a hindcast data base of air pressure, wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. Tech. Rep. 9, Norwegian Meteorological Institute, 42 pp.

  • Rignot, E., , M. Koppes, , and I. Velicogna, 2010: Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3, 187191, doi:10.1038/ngeo765.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , I. Fenty, , D. Menemenlis, , and Y. Xu, 2012: Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol., 53, 257266, doi:10.3189/2012AoG60A136.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., , and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., , L. Yang, , and L. Li, 2005: The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures. Geophys. Res. Lett., 32, L06709, doi:10.1029/2004GL022262.

    • Search Google Scholar
    • Export Citation
  • Saloranta, T. M., , and H. Svendsen, 2001: Across the Arctic front west of Spitsbergen: High-resolution CTD sections from 1998–2000. Polar Res., 20, 177184, doi:10.1111/j.1751-8369.2001.tb00054.x.

    • Search Google Scholar
    • Export Citation
  • Saloranta, T. M., , and P. M. Haugan, 2004: Northward cooling and freshening of the warm core of the West Spitsbergen Current. Polar Res., 23, 7988, doi:10.1111/j.1751-8369.2004.tb00131.x.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., , E. Fahrbach, , S. Østerhus, , and G. Rohardt, 2004: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, doi:10.1029/2003JC001823.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., , and R. Barry, 2011: Processes and impacts of arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Skogseth, R., , P. M. Haugan, , and M. Jakobsson, 2005: Watermass transformations in Storfjorden. Cont. Shelf Res., 25, 667695, doi:10.1016/j.csr.2004.10.005.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., , G. S. Hamilton, , D. A. Sutherland, , L. A. Stearns, , F. Davidson, , M. O. Hammill, , G. B. Stenson, , and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., , M. C. Serreze, , M. M. Holland, , J. E. Kay, , J. Maslanik, , and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., , and C. Cenedese, 2009: Laboratory experiments on the interaction of a buoyant coastal current with a canyon: Application to the East Greenland Current. J. Phys. Oceanogr., 39, 12581271, doi:10.1175/2008JPO4028.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1917: Motion of solids in fluids when the flow is not irrotational. Proc. Roy. Soc. London, A93, 99113, doi:10.1098/rspa.1917.0007.

    • Search Google Scholar
    • Export Citation
  • Teigen, S. H., 2011: Water mass exchange in the sea west of Svalbard, a process study of flow instability and vortex generated heat fluxes in the West Spitsbergen Current. Ph.D. thesis, University of Bergen, 32 pp. [Available online at http://hdl.handle.net/1956/5406.]

  • Teigen, S. H., , F. Nilsen, , and B. Gjevik, 2010: Barotropic instability in the West Spitsbergen Current. J. Geophys. Res., 115, C07016, doi:10.1029/2009JC005996.

    • Search Google Scholar
    • Export Citation
  • Teigen, S. H., , F. Nilsen, , R. Skogseth, , B. Gjevik, , and A. Beszczynska-Möller, 2011: Baroclinic instability in the West Spitsbergen Current. J. Geophys. Res., 116, C07012, doi:10.1029/2011JC006974.

    • Search Google Scholar
    • Export Citation
  • Tverberg, V., , and O. A. Nøst, 2009: Eddy overturning across a shelf edge front. J. Geophys. Res., 114, C04024, doi:10.1029/2008JC005106.

    • Search Google Scholar
    • Export Citation
  • Tverberg, V., , O. A. Nøst, , C. Lydersen, , and K. M. Kovacs, 2014: Winter sea ice melting in the Atlantic water subduction area, Svalbard Norway. J. Geophys. Res. Oceans, 119, 59455967, doi:10.1002/2014JC010013.

    • Search Google Scholar
    • Export Citation
  • Walczowski, W., , J. Piechura, , R. Osinski, , and P. Wieczorek, 2005: The West Spitsbergen Current volume and heat transport from synoptic observations in summer. Deep-Sea Res. I, 52, 13741391, doi:10.1016/j.dsr.2005.03.009.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , J. E. Walsh, , J. Zhang, , U. S. Bhatt, , and M. Ikeda, 2004: Climatology and interannual variability of arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, doi:10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 286 56
PDF Downloads 170 170 35

A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf

View More View Less
  • 1 University Centre in Svalbard, Longyearbyen, Norway
  • | 2 Scottish Association for Marine Science, Oban, United Kingdom
© Get Permissions
Restricted access

Abstract

Barotropic flow along depth contours is found in accordance with standard geostrophic theory. A numerical model is developed that studies the deviation from such a flow. The model gives a good approximation of the dynamical processes on the West Spitsbergen Shelf (WSS) and shows that the West Spitsbergen Current (WSC), the main gateway of Atlantic water (AW) toward the Arctic, connects more easily to the Isfjorden Trough than anywhere else along the shelf. The circulation of AW in the troughs along the WSS is here named the Spitsbergen Trough Current (STC). From hydrographical and ocean current observations it is evident that the STC is primarily barotropic and driven by the sea surface height. A connection between the along-coast wind stress and the STC is established, and it is demonstrated how the increased occurrence of winter cyclones in Fram Strait during January–February accelerates and widens the WSC. Ultimately, this results in a strengthened STC and dominance of AW on the WSS. The STC represents a slower route of AW toward the Arctic Ocean and a large heat transport toward the West Spitsbergen fjords during winter (0.2–0.4 TW toward Isfjorden). Heat flux estimates show that half of the AW heat loss in the Isfjorden Trough is due to heat loss to the surrounding water masses, while the rest is lost to the atmosphere. Sea ice production along West Spitsbergen has been reduced, or even nonexistent, in some fjords since 2006. Here, the authors argue that this is a consequence of the strong southerly wind periods along the WSS during winter.

Denotes Open Access content.

Corresponding author address: Frank Nilsen, University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway. E-mail: frank.nilsen@unis.no

Abstract

Barotropic flow along depth contours is found in accordance with standard geostrophic theory. A numerical model is developed that studies the deviation from such a flow. The model gives a good approximation of the dynamical processes on the West Spitsbergen Shelf (WSS) and shows that the West Spitsbergen Current (WSC), the main gateway of Atlantic water (AW) toward the Arctic, connects more easily to the Isfjorden Trough than anywhere else along the shelf. The circulation of AW in the troughs along the WSS is here named the Spitsbergen Trough Current (STC). From hydrographical and ocean current observations it is evident that the STC is primarily barotropic and driven by the sea surface height. A connection between the along-coast wind stress and the STC is established, and it is demonstrated how the increased occurrence of winter cyclones in Fram Strait during January–February accelerates and widens the WSC. Ultimately, this results in a strengthened STC and dominance of AW on the WSS. The STC represents a slower route of AW toward the Arctic Ocean and a large heat transport toward the West Spitsbergen fjords during winter (0.2–0.4 TW toward Isfjorden). Heat flux estimates show that half of the AW heat loss in the Isfjorden Trough is due to heat loss to the surrounding water masses, while the rest is lost to the atmosphere. Sea ice production along West Spitsbergen has been reduced, or even nonexistent, in some fjords since 2006. Here, the authors argue that this is a consequence of the strong southerly wind periods along the WSS during winter.

Denotes Open Access content.

Corresponding author address: Frank Nilsen, University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway. E-mail: frank.nilsen@unis.no
Save