• Al Saafani, M. A., , S. S. C. Shenoi, , D. Shankar, , M. Aparna, , J. Kurian, , F. Durand, , and P. N. Vinayachandran, 2007: Westward movement of eddies into the Gulf of Aden from the Arabian Sea. J. Geophys. Res., 112, C11004, doi:10.1029/2006JC004020.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., , and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res. Oceanogr. Abstr., 22, 583596, doi:10.1016/0011-7471(75)90046-7.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., , and R. A. Corry, 1985: Ocean response to low-frequency wind forcing with application to the seasonal-variation in the Florida Straits Gulf-Stream transport. Prog. Oceanogr., 14, 740, doi:10.1016/0079-6611(85)90003-5.

    • Search Google Scholar
    • Export Citation
  • Aronson, D. G., , R. P. McGehee, , I. G. Kevrekidis, , and R. Aris, 1986: Entrainment regions for periodically forced oscillators. Phys. Rev. A, 33, 21902192, doi:10.1103/PhysRevA.33.2190.

    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., , and J. C. Larsen, 2001: Sixteen years of Florida Current transport at 27°N. Geophys. Res. Lett., 28, 31793182, doi:10.1029/2001GL013246.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., , W. P. M. De Ruijter, , A. Biastoch, , and R. Zahn, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, doi:10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., 1969: A laboratory model of the wind-driven ocean circulation. J. Fluid Mech., 38, 255271, doi:10.1017/S0022112069000152.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., 1975: The ‘sliced-cylinder’ laboratory model of the wind-driven ocean circulation. Part 2: Oscillatory forcing and Rossby wave resonance. J. Fluid Mech., 69, 4164, doi:10.1017/S0022112075001309.

    • Search Google Scholar
    • Export Citation
  • Becker, A., , and M. A. Page, 1990: Flow separation and unsteadiness in a rotating sliced cylinder. Geophys. Astrophys. Fluid Dyn., 55, 89115, doi:10.1080/03091929008203557.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., , and J. C. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 19251949, doi:10.1175/1520-0485(1999)029<1925:LSLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., , W. Dewar, , S. Kravtsov, , and J. McWilliams, 2007a: Ocean eddy dynamics in a coupled ocean-atmosphere model. J. Phys. Oceanogr., 37, 11031121, doi:10.1175/JPO3041.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., , A. M. Hogg, , and W. K. Dewar, 2007b: The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr., 37, 23632386, doi:10.1175/JPO3118.1.

    • Search Google Scholar
    • Export Citation
  • Bowen, M. M., , J. L. Wilkin, , and W. J. Emery, 2005: Variability and forcing of the East Australian Current. J. Geophys. Res., 110, C03019, doi:10.1029/2004JC002533.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , and H. H. Furey, 2012: Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea outflow water. Prog. Oceanogr., 96, 1439, doi:10.1016/j.pocean.2011.09.003.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , B. Wang, , T. Li, , and L. Ji, 1994: Interactions between the seasonal cycle and the southern oscillation—Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys. Res. Lett., 21, 28172820, doi:10.1029/94GL02759.

    • Search Google Scholar
    • Export Citation
  • Chave, A., , D. Luther, , and J. Filloux, 1991: Variability of the wind stress curl over the North Pacific: Implication for the oceanic response. J. Geophys. Res., 96, 18 36118 379, doi:10.1029/91JC02152.

    • Search Google Scholar
    • Export Citation
  • Chhak, K. C., , A. M. Moore, , and R. F. Milliff, 2009: Stochastic forcing of ocean variability by the North Atlantic Oscillation. J. Phys. Oceanogr., 39, 162184, doi:10.1175/2008JPO3972.1.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33, 10571082, doi:10.1175/1520-0485(2003)033<1057:NMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2000: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Atmospheric and Oceanographic Sciences Library, Vol. 22, Kluwer Academic, 458 pp.

  • Dijkstra, H. A., , and C. A. Katsman, 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astrophys. Fluid Dyn., 85, 195232, doi:10.1080/03091929708208989.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , L. J. Gramer, , W. E. Johns, , C. S. Meinen, , and M. O. Baringer, 2009: Observed interannual variability of the Florida Current: Wind forcing and the North Atlantic Oscillation. J. Phys. Oceanogr., 39, 721736, doi:10.1175/2008JPO4001.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29A, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , N. Sennéchael, , Y.-O. Kwon, , and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2004: Latitudinal and frequency characteristics of the westward propagation of large-scale oceanic variability. J. Phys. Oceanogr., 34, 19071921, doi:10.1175/1520-0485(2004)034<1907:LAFCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glazier, J., , and A. Libchaber, 1988: Quasi-periodicity and dynamical systems: An experimentalist’s view. IEEE Trans. Circuits Syst., 35, 790809, doi:10.1109/31.1826.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., , and A. E. Kiss, 1999: Flow regimes in a wide ‘sliced-cylinder’ model of homogeneous beta-plane circulation. J. Fluid Mech., 399, 205236, doi:10.1017/S0022112099006370.

    • Search Google Scholar
    • Export Citation
  • Haucke, H., , and R. Ecke, 1987: Mode-locking and chaos in Rayleigh-Bénard convection. Physica D, 25, 307329, doi:10.1016/0167-2789(87)90106-0.

    • Search Google Scholar
    • Export Citation
  • Hill, K. L., , S. R. Rintoul, , R. Coleman, , and K. R. Ridgway, 2008: Wind forced low frequency variability of the East Australian Current. Geophys. Res. Lett., 35, L08602, doi:10.1029/2007GL032912.

    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., , I. D. Goodwin, , S. McGregor, , E. Molina, , and S. B. Power, 2011: ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep-Sea Res. II, 58, 547558, doi:10.1016/j.dsr2.2010.06.007.

    • Search Google Scholar
    • Export Citation
  • Hong, B. G., , W. Sturges, , and A. J. Clarke, 2000: Sea level on the U.S. east coast: Decadal variability caused by open ocean wind-curl forcing. J. Phys. Oceanogr., 30, 20882098, doi:10.1175/1520-0485(2000)030<2088:SLOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and et al. , 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308, doi:10.1038/nature14504.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., , and V. A. Sheremet, 1995: Multiple solutions and advection-dominated flows in the wind-driven circulation. Part 1: Slip. J. Mar. Res., 53, 703737, doi:10.1357/0022240953213052.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., , F.-F. Jin, , and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764786, doi:10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , J. D. Neelin, , and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264, 7072, doi:10.1126/science.264.5155.70.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , J. D. Neelin, , and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98, 442465, doi:10.1016/0167-2789(96)00111-X.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., , R. J. Zantopp, , and G. Goni, 2003: Cross-gyre transport by North Brazil Current rings. Interhemispheric Water Exchange in the Atlantic Ocean, G. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 411–441, doi:10.1016/S0422-9894(03)80156-3.

  • Joyce, T., , C. Deser, , and M. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13, 25502569, doi:10.1175/1520-0442(2000)013<2550:TRBDVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., , R. J. Small, , R. M. Samelson, , B. Qiu, , T. M. Joyce, , Y.-O. Kwon, , and M. F. Cronin, 2010: Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, doi:10.1175/2010JCLI3346.1.

    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., 1991: Topographic effects on the seasonal circulation of the Indian Ocean. J. Geophys. Res., 96, 16 82716 837, doi:10.1029/91JC01542.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., 2000: Dynamics of laboratory models of the wind-driven ocean circulation. Ph.D. thesis, Australian National University, 160 pp. [Available online at http://hdl.handle.net/1885/47497.]

  • Kiss, A. E., 2002: Potential vorticity “crises”, adverse pressure gradients, and western boundary current separation. J. Mar. Res., 60, 779803, doi:10.1357/002224002321505138.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., 2003: A modified quasigeostrophic formulation for weakly nonlinear barotropic flow with large-amplitude depth variations. Ocean Modell., 5, 171191, doi:10.1016/S1463-5003(02)00038-0.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., 2004: Potential vorticity dynamics in a domain with closed geostrophic contours. I: Steady linear flows. J. Mar. Res., 62, 461489, doi:10.1357/0022240041850039.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., 2007: Nonlinear resonance and chaos in an ocean model. Frontiers in Turbulence and Coherent Structures, J. Denier and J. S. Frederiksen, Eds., World Scientific Lecture Notes in Complex Systems, Vol. 6, World Scientific, 149–169.

  • Kiss, A. E., , and C. Ménesguen, 2004: Response of ocean circulation to variable wind forcing. 15th Australasian Fluid Mechanics Conf., Sydney, NSW, Australia, University of Sydney, 4 pp. [Available online at http://sydney.edu.au/engineering/aeromech/15afmc/proceedings/papers/AFMC00145.pdf]

  • Kravtsov, S., , P. Berloff, , W. K. Dewar, , M. Ghil, , and J. C. McWilliams, 2006: Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model. J. Climate, 19, 63916408, doi:10.1175/JCLI3976.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., , M. A. Alexander, , N. A. Bond, , C. Frankignoul, , H. Nakamura, , B. Qiu, , and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, doi:10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , W. R. Holland, , and J. C. Evans, 1991: Quasi-geostrophic ocean response to real wind forcing: The effects of temporal smoothing. J. Phys. Oceanogr., 21, 9981017, doi:10.1175/1520-0485(1991)021<0998:QGORTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., , W. E. Johns, , R. J. Zantopp, , and E. R. Fillenbaum, 1996: Moored observations of western boundary current variability and thermohaline circulation at 26.5° in the subtropical North Atlantic. J. Phys. Oceanogr., 26, 962983, doi:10.1175/1520-0485(1996)026<0962:MOOWBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., , and J. Middleton, 2000: Modeling the East Australian Current in the western Tasman Sea. J. Phys. Oceanogr., 30, 29562971, doi:10.1175/1520-0485(2001)031<2956:MTEACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mata, M. M., , S. E. Wijffels, , J. A. Church, , and M. Tomczak, 2006: Eddy shedding and energy conversions in the East Australian Current. J. Geophys. Res., 111, C09034, doi:10.1029/2006JC003592.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1977: A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans, 1, 427441, doi:10.1016/0377-0265(77)90002-1.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., 2004: Annual and decadal variability in the western subtropical North Atlantic: Signal characteristics and sampling methodologies. Prog. Oceanogr., 62, 3366, doi:10.1016/j.pocean.2004.07.002.

    • Search Google Scholar
    • Export Citation
  • Myers, P., , and A. Weaver, 1996: On the circulation of the North Pacific Ocean: Climatology, seasonal cycle and interpentadal variability. Prog. Oceanogr., 38, 149, doi:10.1016/S0079-6611(96)00009-2.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., , and B. P. Luce, 2001: Global bifurcation of Shilnikov type in a double-gyre ocean model. J. Phys. Oceanogr., 31, 26692690, doi:10.1175/1520-0485(2001)031<2669:GBOSTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nauw, J. J., , and H. A. Dijkstra, 2001: The origin of low-frequency variability of double-gyre wind-driven flows. J. Mar. Res., 59, 567597, doi:10.1357/002224001762842190.

    • Search Google Scholar
    • Export Citation
  • Newhouse, S., , D. Ruelle, , and F. Takens, 1978: Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3. Commun. Math. Phys., 64, 3540, doi:10.1007/BF01940759.

    • Search Google Scholar
    • Export Citation
  • Nilsson, C., , and G. Cresswell, 1980: The formation and evolution of East Australian Current warm-core eddies. Prog. Oceanogr., 9, 133183, doi:10.1016/0079-6611(80)90008-7.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1996: Why are rings regularly shed in the western equatorial Atlantic but not in the western Pacific? Prog. Oceanogr., 38, 417451, doi:10.1016/S0079-6611(97)00004-9.

    • Search Google Scholar
    • Export Citation
  • Palastanga, V., , P. J. van Leeuwen, , and W. P. M. de Ruijter, 2006: A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability. J. Geophys. Res., 111, C09029, doi:10.1029/2005JC003081.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., , and H. P. Greenspan, 1967: A simple laboratory model for the oceanic circulation. J. Fluid Mech., 27, 291304, doi:10.1017/S0022112067000321.

    • Search Google Scholar
    • Export Citation
  • Penven, P., , J. R. E. Lutjeharms, , and P. Florenchie, 2006: Madagascar: A pacemaker for the Agulhas Current system? Geophys. Res. Lett., 33, L17609, doi:10.1029/2006GL026854.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2010: Coherence resonance in a double-gyre model of the Kuroshio Extension. J. Phys. Oceanogr., 40, 238248, doi:10.1175/2009JPO4229.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2011: Low-frequency variability, coherence resonance, and phase selection in a low-order model of the wind-driven ocean circulation. J. Phys. Oceanogr., 41, 15851604, doi:10.1175/JPO-D-10-05018.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., , H. A. Dijkstra, , and A. Riccio, 2009: A nonlinear theory of the Kuroshio Extension bimodality. J. Phys. Oceanogr., 39, 22122229, doi:10.1175/2009JPO4181.1.

    • Search Google Scholar
    • Export Citation
  • Pikovsky, A., , M. Rosenblum, , and J. Kurths, 2001: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series, Vol. 12, Cambridge University Press, 432 pp.

  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, doi:10.1175/2459.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34, 15151527, doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , and J. S. Godfrey, 1997: Seasonal cycle of the East Australian Current. J. Geophys. Res., 102, 22 92122 936, doi:10.1029/97JC00227.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., , and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Rosenblum, M., , and A. Pikovsky, 2003: Synchronization: From pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys., 44, 401416, doi:10.1080/00107510310001603129.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T., 2006: Low-frequency variability of a two-layer ocean forced by periodic winds. Earth Planets Space, 58, 12031212, doi:10.1186/BF03352011.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T., , and T. Yamagata, 1996: Seasonal transport variations of the wind-driven ocean circulation in a two-layer planetary geostrophic model with a continental slope. J. Mar. Res., 54, 261284, doi:10.1357/0022240963213402.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T. P., , and H. A. Dijkstra, 2013: Interaction of additive noise and nonlinear dynamics in the double-gyre wind-driven ocean circulation. J. Phys. Oceanogr., 43, 366381, doi:10.1175/JPO-D-12-047.1.

    • Search Google Scholar
    • Export Citation
  • Schmeits, M., , and H. Dijkstra, 2001: Bimodal behavior of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr., 31, 34353456, doi:10.1175/1520-0485(2001)031<3435:BBOTKA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., , and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Schouten, M. W., , W. P. M. de Ruijter, , and P. J. van Leeuwen, 2002: Upstream control of Agulhas Ring shedding. J. Geophys. Res., 107, 3109, doi:10.1029/2001JC000804.

    • Search Google Scholar
    • Export Citation
  • Shimokawa, S., , and T. Matsuura, 2010: Chaotic behaviors in the response of a quasigeostrophic oceanic double gyre to seasonal external forcing. J. Phys. Oceanogr., 40, 14581472, doi:10.1175/2010JPO4400.1.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , M. Ghil, , K. Ide, , R. Temam, , and S. H. Wang, 2003: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr., 33, 729752, doi:10.1175/1520-0485(2003)33<729:LVISMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and T. J. O’Kane, 2015: Drivers of decadal variability in the Tasman Sea. J. Geophys. Res. Oceans, 120, 31933210, doi:10.1002/2014JC010550.

    • Search Google Scholar
    • Export Citation
  • Speich, S., , H. A. Dijkstra, , and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation. Nonlinear Processes Geophys., 2, 241268, doi:10.5194/npg-2-241-1995.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , K. Fraedrich, , and F. Lunkeit, 2001: Regime transitions in a stochastically forced double-gyre model. J. Phys. Oceanogr., 31, 411426, doi:10.1175/1520-0485(2001)031<0411:RTIASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sushama, L., , M. Ghil, , and K. Ide, 2007: Spatio-temporal variability in a mid-latitude ocean basin subject to periodic wind forcing. Atmos.–Ocean, 45, 227250, doi:10.3137/ao.450404.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. G. Olson, , and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. NCAR Tech. Note NCAR/TN-338+STR, 93 pp., doi:10.5065/D6ST7MR9.

  • Trenberth, K. E., , W. G. Large, , and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20, 17421760, doi:10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , L. Stone, , M. A. Cane, , and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264, 7274, doi:10.1126/science.264.5155.72.

    • Search Google Scholar
    • Export Citation
  • van der Vaart, P. C. F., , H. M. Schuttelaars, , D. Calvete, , and H. A. Dijkstra, 2002: Instability of time-dependent wind-driven ocean gyres. Phys. Fluids, 14, 36013615, doi:10.1063/1.1503804.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., , V. Zharkov, , D. Nof, , H. A. Dijkstra, , W. P. M. de Ruijter, , A. T. van Scheltinga, , and F. Wubs, 2013: Agulhas ring formation as a barotropic instability of the retroflection. Geophys. Res. Lett., 40, 54355438, doi:10.1002/2013GL057751.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., , S. G. H. Philander, , and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10, 411429, doi:10.1175/1520-0485(1980)010<0411:TORTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 6
PDF Downloads 28 28 4

The Influence of Periodic Forcing on the Time Dependence of Western Boundary Currents: Phase Locking, Chaos, and Mechanisms of Low-Frequency Variability

View More View Less
  • 1 School of Physical, Environmental and Mathematical Sciences, University of New South Wales Canberra, Australian Defence Force Academy, Canberra, Australian Capital Territory, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

In this study an idealized gyre is put into a temporally periodic state by a steady wind stress curl forcing, and its nonlinear response to variable forcing is investigated by a detailed parameter survey varying the time-mean component of the wind and the amplitude and frequency of a periodic component. Periodic wind variations exceeding ~0.5% profoundly affect the western boundary current (WBC) time dependence, yielding regime diagrams with intricately interleaved regions of phase locking, quasiperiodicity, and chaos. In phase-locked states, the WBC period is locked to a rational multiple of the forcing period and can be shifted far outside its natural range. Quasiperiodic states can exhibit long intervals of near-synchrony interrupted periodically by brief slips out of phase with the forcing. Hysteresis and a period-doubling route to chaos are also found. The nonlinear WBC response can include variability at long time scales that are absent from both the forcing and the steadily driven current; this is a new mechanism for the generation of low-frequency WBC variability. These behaviors and their parameter dependence resemble the Devil’s staircase found in the “circle map” model of a periodically forced nonlinear oscillator, but with differences attributable to higher-dimensional dynamics. These nonlinear effects occur with forcing amplitudes in the observed range of the annual wind stress curl cycle and therefore should be considered when inferring the cause of observed WBC time scales. These results suggest that studies omitting either forcing variation or nonlinearity provide an unrealistically narrow view of the possible origins of time dependence in WBCs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0113.s1.

Corresponding author address: Andrew Kiss, School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Australian Defence Force Academy, P.O. Box 7916, Canberra BC ACT 2610, Australia. E-mail: a.kiss@adfa.edu.au

Abstract

In this study an idealized gyre is put into a temporally periodic state by a steady wind stress curl forcing, and its nonlinear response to variable forcing is investigated by a detailed parameter survey varying the time-mean component of the wind and the amplitude and frequency of a periodic component. Periodic wind variations exceeding ~0.5% profoundly affect the western boundary current (WBC) time dependence, yielding regime diagrams with intricately interleaved regions of phase locking, quasiperiodicity, and chaos. In phase-locked states, the WBC period is locked to a rational multiple of the forcing period and can be shifted far outside its natural range. Quasiperiodic states can exhibit long intervals of near-synchrony interrupted periodically by brief slips out of phase with the forcing. Hysteresis and a period-doubling route to chaos are also found. The nonlinear WBC response can include variability at long time scales that are absent from both the forcing and the steadily driven current; this is a new mechanism for the generation of low-frequency WBC variability. These behaviors and their parameter dependence resemble the Devil’s staircase found in the “circle map” model of a periodically forced nonlinear oscillator, but with differences attributable to higher-dimensional dynamics. These nonlinear effects occur with forcing amplitudes in the observed range of the annual wind stress curl cycle and therefore should be considered when inferring the cause of observed WBC time scales. These results suggest that studies omitting either forcing variation or nonlinearity provide an unrealistically narrow view of the possible origins of time dependence in WBCs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0113.s1.

Corresponding author address: Andrew Kiss, School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Australian Defence Force Academy, P.O. Box 7916, Canberra BC ACT 2610, Australia. E-mail: a.kiss@adfa.edu.au
Save