Impact of Thermally Driven Turbulence on the Bottom Melting of Ice

T. Keitzl Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by T. Keitzl in
Current site
Google Scholar
PubMed
Close
,
J. P. Mellado Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by J. P. Mellado in
Current site
Google Scholar
PubMed
Close
, and
D. Notz Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by D. Notz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct numerical simulation and laboratory experiments are used to investigate turbulent convection beneath a horizontal ice–water interface. Scaling laws are derived that quantify the dependence of the melt rate of the ice on the far-field temperature of the water under purely thermally driven conditions. The scaling laws, the simulations, and the laboratory experiments consistently yield that the melt rate increases by two orders of magnitude, from ⋍101 to ⋍103 mm day−1, as the far-field temperature increases from 4° to 8°C. The strong temperature dependence of the melt rate is explained by analyzing the vertical structure of the flow: For far-field temperatures below 8°C, the flow features a stably stratified, diffusive layer next to the ice that shields it from the warmer, turbulent outer layer. The stratification in the diffusive layer diminishes as the far-field temperature increases and vanishes for far-field temperatures far above 8°C. Possible implications of these results for ice–ocean interfaces are discussed. The drastic melt-rate increase implies that turbulence needs to be considered in the analysis of ice–water interfaces even in shear-free conditions.

Corresponding author address: T. Keitzl, Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: t@keitzl.com

Abstract

Direct numerical simulation and laboratory experiments are used to investigate turbulent convection beneath a horizontal ice–water interface. Scaling laws are derived that quantify the dependence of the melt rate of the ice on the far-field temperature of the water under purely thermally driven conditions. The scaling laws, the simulations, and the laboratory experiments consistently yield that the melt rate increases by two orders of magnitude, from ⋍101 to ⋍103 mm day−1, as the far-field temperature increases from 4° to 8°C. The strong temperature dependence of the melt rate is explained by analyzing the vertical structure of the flow: For far-field temperatures below 8°C, the flow features a stably stratified, diffusive layer next to the ice that shields it from the warmer, turbulent outer layer. The stratification in the diffusive layer diminishes as the far-field temperature increases and vanishes for far-field temperatures far above 8°C. Possible implications of these results for ice–ocean interfaces are discussed. The drastic melt-rate increase implies that turbulence needs to be considered in the analysis of ice–water interfaces even in shear-free conditions.

Corresponding author address: T. Keitzl, Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: t@keitzl.com
Save
  • Chillá, F., and J. Schumacher, 2012: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E, 35, 58, doi:10.1140/epje/i2012-12058-1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. R. Hunt, 1997: Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model. J. Fluid Mech., 347, 197234, doi:10.1017/S0022112097006514.

    • Search Google Scholar
    • Export Citation
  • Frankenstein, G., and R. Garner, 1967: Equations for determining the brine volume of sea ice from −0.5° to −22.9°C. J. Glaciol., 6, 943944.

    • Search Google Scholar
    • Export Citation
  • Keitzl, T., D. Notz, and J.-P. Mellado, 2014: How fast does ice melt from below? 67th Annual Meeting of the American Physical Society Division of Fluid Dynamics, Boston, MA, American Physical Society, V0020, doi:10.1103/APS.DFD.2014.GFM.V0020.

  • Lele, S. K., 1992: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642, doi:10.1016/0021-9991(92)90324-R.

    • Search Google Scholar
    • Export Citation
  • Martin, S., and P. Kauffman, 1977: An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr., 7, 272283, doi:10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1983: Turbulent heat and momentum transfer in the oceanic boundary layer under melting pack ice. J. Geophys. Res., 88, 28272835, doi:10.1029/JC088iC05p02827.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, doi:10.1017/S0022112010002831.

  • Mellado, J. P., 2012: Direct numerical simulation of free convection over a heated plate. J. Fluid Mech., 712, 418450, doi:10.1017/jfm.2012.428.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., and C. Ansorge, 2012: Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech., 92, 380392, doi:10.1002/zamm.201100078.

    • Search Google Scholar
    • Export Citation
  • Mironov, D., A. Terzhevik, G. Kirillin, T. Jonas, J. Malm, and D. Farmer, 2002: Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J. Geophys. Res., 107 (C4), doi:10.1029/2001JC000892.

    • Search Google Scholar
    • Export Citation
  • Notz, D., M. G. McPhee, M. G. Worster, G. A. Maykut, K. H. Schlnzen, and H. Eicken, 2003: Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res., 108, 3223, doi:10.1029/2001JC001173.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. Richter-Menge, B. C. Elder, C. Polashenski, T. Arbetter, and O. Brennick, 2013: It is the North Pole: Sea ice observations at the North Pole Environmental Observatory. 2013 Fall Meeting, San Francisco, California, Amer. Geophys. Union, Abstract 31, C31A-0621.

  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Pounder, E. R., 1965: The Physics of Ice. Pergamon Press, 151 pp.

  • Sharqawy, M. H., J. H. Lienhard, and S. M. Zubair, 2010: Thermophysical properties of seawater: A review of existing correlations and data. Desalin. Water Treat., 16, 354380, doi:10.5004/dwt.2010.1079.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc., 116, 705739, doi:10.1002/qj.49711649309.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Williamson, J. H., 1980: Low-storage Runge-Kutta schemes. J. Comput. Phys., 35, 4856, doi:10.1016/0021-9991(80)90033-9.

  • Wouters, B., A. Martin-Espaol, V. Helm, T. Flament, J. M. van Wessem, S. R. M. Ligtenberg, M. R. van den Broeke, and J. L. Bamber, 2015: Dynamic thinning of glaciers on the southern Antarctic Peninsula. Science, 348, 899903, doi:10.1126/science.aaa5727.

    • Search Google Scholar
    • Export Citation
  • Wunsch, S., 2003: Stochastic simulations of buoyancy-reversal experiments. Phys. Fluids, 15, 14421456, doi:10.1063/1.1572160.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 674 218 32
PDF Downloads 410 126 32