Lagrangian Surface Wave Motion and Stokes Drift Fluctuations

T. H. C. Herbers NorthWest Research Associates, El Granada, California

Search for other papers by T. H. C. Herbers in
Current site
Google Scholar
PubMed
Close
and
T. T. Janssen NorthWest Research Associates, El Granada, California

Search for other papers by T. T. Janssen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nonlinear effects in Lagrangian sea surface motions are important to understanding variability in wave-induced mass transport, wave-driven diffusion processes, and the interpretation of measurements obtained with moored or free-drifting buoys. This study evaluates the Lagrangian vertical and horizontal motions of a particle at the surface in a natural, random sea state using second-order, finite-depth wave theory. In deep water, the predicted low-frequency (infragravity) surface height fluctuations are much larger than Eulerian bound wave motions and of the opposite sign. Comparison to surface elevation bispectra observed with a moored buoy in steady, high-wind conditions shows good agreement and confirms that—in contrast to the Eulerian sea surface motion with predominant phase coupling between the spectral peak and double-frequency harmonic components—nonlinearity in Lagrangian wave observations is dominated by phase-coupled infragravity motions. Sea surface skewness estimates obtained from moored buoys in deep and shallow sites, over a wide range of wind–sea and swell conditions, are in good agreement with second-order theory predictions. Theory and field data analysis of surface drift motions in deep water reveal energetic [O(10) cm s−1] infragravity velocity fluctuations that are several orders of magnitude larger and 180° out of phase with Eulerian infragravity motions. These large fluctuations in Stokes drift may be important in upper-ocean diffusion processes.

Corresponding author address: Dr. Thomas H. C. Herbers, NorthWest Research Associates, P.O. Box 1533, El Granada, CA 94018. E-mail: thcherbers@gmail.com

Abstract

Nonlinear effects in Lagrangian sea surface motions are important to understanding variability in wave-induced mass transport, wave-driven diffusion processes, and the interpretation of measurements obtained with moored or free-drifting buoys. This study evaluates the Lagrangian vertical and horizontal motions of a particle at the surface in a natural, random sea state using second-order, finite-depth wave theory. In deep water, the predicted low-frequency (infragravity) surface height fluctuations are much larger than Eulerian bound wave motions and of the opposite sign. Comparison to surface elevation bispectra observed with a moored buoy in steady, high-wind conditions shows good agreement and confirms that—in contrast to the Eulerian sea surface motion with predominant phase coupling between the spectral peak and double-frequency harmonic components—nonlinearity in Lagrangian wave observations is dominated by phase-coupled infragravity motions. Sea surface skewness estimates obtained from moored buoys in deep and shallow sites, over a wide range of wind–sea and swell conditions, are in good agreement with second-order theory predictions. Theory and field data analysis of surface drift motions in deep water reveal energetic [O(10) cm s−1] infragravity velocity fluctuations that are several orders of magnitude larger and 180° out of phase with Eulerian infragravity motions. These large fluctuations in Stokes drift may be important in upper-ocean diffusion processes.

Corresponding author address: Dr. Thomas H. C. Herbers, NorthWest Research Associates, P.O. Box 1533, El Granada, CA 94018. E-mail: thcherbers@gmail.com
Save
  • Aiki, H., and R. J. Greatbatch, 2012: Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725747, doi:10.1175/JPO-D-11-095.1.

    • Search Google Scholar
    • Export Citation
  • Bailard, J. A., and D. L. Inman, 1981: An energetics bedload model for a plane sloping beach: Local transport. J. Geophys. Res., 86, 20352043, doi:10.1029/JC086iC03p02035.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., and R. T. Guza, 1985: Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech., 161, 425448, doi:10.1017/S0022112085003007.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481500, doi:10.1017/S0022112062000373.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Fluid Dyn., 1, 463502, doi:10.1080/03091927009365783.

  • Hasselmann, K., W. Munk, and G. MacDonald, 1963: Bispectra of ocean waves. Proceedings of the Symposium on Time Series Analysis, M. Rosenblatt, Ed., John Wiley, 125–139.

  • Herbers, T. H. C., S. Elgar, R. T. Guza, and W. C. O’Reilly, 1995: Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part II: Free waves. J. Phys. Oceanogr., 25, 10631079, doi:10.1175/1520-0485(1995)025<1063:IFHMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., P. F. Jessen, T. T. Janssen, D. B. Colbert, and J. H. MacMahan, 2012: Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Oceanic Technol., 29, 944959, doi:10.1175/JTECH-D-11-00128.1.

    • Search Google Scholar
    • Export Citation
  • Herterich, K., and K. Hasselmann, 1982: The horizontal diffusion of tracers by surface waves. J. Phys. Oceanogr., 12, 704711, doi:10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoefel, F., and S. Elgar, 2003: Wave-induced sediment transport and sandbar migration. Science, 299, 18851887, doi:10.1126/science.1081448.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 554 pp.

  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, doi:10.1175/2008JPO3986.1.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1986: Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech., 173, 683707, doi:10.1017/S0022112086001325.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to ‘surf beats.’ J. Fluid Mech., 13, 481504, doi:10.1017/S0022112062000877.

    • Search Google Scholar
    • Export Citation
  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16, 20522060, doi:10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearman, D. W., T. H. C. Herbers, T. T. Janssen, H. D. van Ettinger, S. A. McIntyre, and P. F. Jessen, 2014: Drifter observations of the effects of shoals and tidal-currents on wave evolution in San Francisco Bight. Cont. Shelf Res., 91, 109119, doi:10.1016/j.csr.2014.08.011.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1960: On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech., 9, 193217, doi:10.1017/S0022112060001043.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, doi:10.1175/JPO2701.1.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, E., 1988: Altimetry for non-Gaussian oceans: Height biases and estimation of parameters. J. Geophys. Res., 93, 14 10714 120, doi:10.1029/JC093iC11p14107.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2006: Observed variability of ocean wave Stokes drift, and the Eulerian response to passing groups. J. Phys. Oceanogr., 36, 13811402, doi:10.1175/JPO2910.1.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., 1986: On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry. J. Geophys. Res., 91, 9951006, doi:10.1029/JC091iC01p00995.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., and M. S. Longuet-Higgins, 1986: On the skewness of sea-surface elevation. J. Fluid Mech., 164, 487497, doi:10.1017/S0022112086002653.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441473.

  • Thomson, J., 2012: Wave breaking dissipation observed with “SWIFT” drifters. J. Atmos. Oceanic Technol., 29, 18661882, doi:10.1175/JTECH-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., and A. J. Bowen, 1994: Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24, 18501866, doi:10.1175/1520-0485(1994)024<1850:WAWDFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 856 205 22
PDF Downloads 602 150 27