Seismic Imaging of Rapid Onset of Stratified Turbulence in the South Atlantic Ocean

Matthew Falder Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Matthew Falder in
Current site
Google Scholar
PubMed
Close
,
N. J. White Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom

Search for other papers by N. J. White in
Current site
Google Scholar
PubMed
Close
, and
C. P. Caulfield BP Institute, and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by C. P. Caulfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Broadband measurements of the internal wavefield will help to unlock an understanding of the energy cascade within the oceanic realm. However, there are challenges in acquiring observations with sufficient spatial resolution, especially in horizontal dimensions. Seismic reflection profiling can achieve a horizontal and vertical resolution of order meters. It is suitable for imaging thermohaline fine structure on scales that range from tens of meters to hundreds of kilometers. This range straddles the transition from internal wave to turbulent regimes. Here, the authors analyze an 80-km-long seismic image from the Falkland Plateau and calculate vertical displacement spectra of tracked reflections. First, they show that these spectra are consistent with the Garrett–Munk model at small horizontal wavenumbers (i.e., kx ≲ 3 × 10−3 cpm). There is a transition to stratified turbulence at larger wavenumbers (i.e., kx ≳ 2 × 10−1 cpm). This transition occurs at length scales that are significantly larger than the Ozmidov length scale above which stratification is expected to modify isotropic Kolmogorov turbulence. Second, the authors observe a rapid onset of this stratified turbulence over a narrow range of length scales. This onset is consistent with a characteristic energy injection scale of stratified turbulence with a forward cascade toward smaller scales through isotropic turbulence below the Ozmidov length scale culminating in microscale dissipation. Finally, they estimate the spatial pattern of diapycnal diffusivity and show that the existence of an injection scale can increase these estimates by a factor of 2.

Department of Earth Sciences contribution number esc.3582.

Corresponding author address: Matthew Falder, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, United Kingdom. E-mail: maf49@cam.ac.uk; njw10@cam.ac.uk; cpc12@cam.ac.uk

Abstract

Broadband measurements of the internal wavefield will help to unlock an understanding of the energy cascade within the oceanic realm. However, there are challenges in acquiring observations with sufficient spatial resolution, especially in horizontal dimensions. Seismic reflection profiling can achieve a horizontal and vertical resolution of order meters. It is suitable for imaging thermohaline fine structure on scales that range from tens of meters to hundreds of kilometers. This range straddles the transition from internal wave to turbulent regimes. Here, the authors analyze an 80-km-long seismic image from the Falkland Plateau and calculate vertical displacement spectra of tracked reflections. First, they show that these spectra are consistent with the Garrett–Munk model at small horizontal wavenumbers (i.e., kx ≲ 3 × 10−3 cpm). There is a transition to stratified turbulence at larger wavenumbers (i.e., kx ≳ 2 × 10−1 cpm). This transition occurs at length scales that are significantly larger than the Ozmidov length scale above which stratification is expected to modify isotropic Kolmogorov turbulence. Second, the authors observe a rapid onset of this stratified turbulence over a narrow range of length scales. This onset is consistent with a characteristic energy injection scale of stratified turbulence with a forward cascade toward smaller scales through isotropic turbulence below the Ozmidov length scale culminating in microscale dissipation. Finally, they estimate the spatial pattern of diapycnal diffusivity and show that the existence of an injection scale can increase these estimates by a factor of 2.

Department of Earth Sciences contribution number esc.3582.

Corresponding author address: Matthew Falder, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, United Kingdom. E-mail: maf49@cam.ac.uk; njw10@cam.ac.uk; cpc12@cam.ac.uk
Save
  • Bartello, P., and S. M. Tobias, 2013: Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech., 725, 122, doi:10.1017/jfm.2013.170.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., I. D. Howells, and A. A. Townsend, 1959: Small-scale variation of convected quantities like temperature in turbulent fluid: Part 2. The case of large conductivity. J. Fluid Mech., 5, 134139, doi:10.1017/S0022112059000106.

    • Search Google Scholar
    • Export Citation
  • Biescas, B., B. R. Ruddick, M. R. Nedimovic, V. Sallarès, G. Bornstein, J. F. Mojica, and A. C. Dave, 2014: Recovery of temperature, salinity, and potential density from ocean reflectivity. J. Geophys. Res. Oceans, 119, 31713184, doi:10.1002/2013JC009662.

    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., P. Billant, E. Lindborg, and J.-M. Chomaz, 2007: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585, 343368, doi:10.1017/S0022112007006854.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal Wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1951: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22 469473, doi:10.1063/1.1699986.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and R.-C. Lien, 2000: The wave turbulence transition for stratified flows. J. Phys. Oceanogr., 30, 16691678, doi:10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., and W. S. Holbrook, 2009: Sound speed requirements for optimal imaging of seismic oceanography data. Geophys. Res. Lett., 36, L00D01, doi:10.1029/2009GL038991.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Gargett, A., and P. Hendricks, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271, doi:10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time of internal waves. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

  • Gregg, M. C., 1993: Varieties of fully resolved spectra of vertical shear. J. Phys. Oceanogr., 23, 124141, doi:10.1175/1520-0485(1993)023<0124:VOFRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., and I. Fer, 2005: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32, L15604, doi:10.1029/2005GL023733.

  • Holbrook, W. S., P. Páramo, S. Pearse, and R. W. Schmitt, 2003: Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821824, doi:10.1126/science.1085116.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., I. Fer, R. W. Schmitt, D. Lizarralde, J. M. Klymak, L. C. Helfrich, and R. Kubichek, 2013: Estimating oceanic turbulence dissipation from seismic images. J. Atmos. Oceanic Technol., 30, 17671788, doi:10.1175/JTECH-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., C. Ménesguen, S. Le Gentil, R. Schopp, B. Marsset, and H. Aiki, 2013: Layering and turbulence surrounding an anticyclonic oceanic vortex: In situ observations and quasi-geostrophic numerical simulations. J. Fluid Mech., 731, 418442, doi:10.1017/jfm.2013.369.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007a: Oceanic isopycnal slope spectra. Part I: Internal waves. J. Phys. Oceanogr., 37, 12151231, doi:10.1175/JPO3073.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007b: Oceanic isopycnal slope spectra. Part II: turbulence. J. Phys. Oceanogr., 37, 12321245, doi:10.1175/JPO3074.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A., 1941: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32 (1), 1618.

  • Krahmann, G., P. Brandt, D. Klaeschen, and T. Reston, 2008: Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data. J. Geophys. Res., 113, C12016, doi:10.1029/2007JC004678.

    • Search Google Scholar
    • Export Citation
  • Krahmann, G., C. Papenberg, P. Brandt, and M. Vogt, 2009: Evaluation of seismic reflector slopes with a Yoyo-CTD. Geophys. Res. Lett., 36, L00D02, doi:10.1029/2009GL038964.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207241, doi:10.1017/S0022112005008128.

  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, doi:10.1029/96JC00508.

  • Nandi, P., W. S. Holbrook, S. Pearse, P. Páramo, and R. W. Schmitt, 2004: Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett., 31, L23311, doi:10.1029/2004GL021325.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A., 1949: The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR, Ser. Geogr. Geofiz., 13, 5869.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424, doi:10.1175/2007JAS2455.1.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2010: Recent progress in stratified turbulence. Ten Chapters in Turbulence, P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan, Eds., Cambridge University Press, Cambridge, 269–317.

  • Ruddick, B. B. B., H. Song, and C. Dong, 2009: Water column seismic images as maps of temperature gradient. Oceanography, 22, 192–205, doi:10.5670/oceanog.2009.19.

    • Search Google Scholar
    • Export Citation
  • Sallarès, V., B. Biescas, G. G. Buffett, R. Carbonell, J. J. Dañobeitia, and J. L. Pelegrí, 2009: Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys. Res. Lett., 36, L00D06, doi:10.1029/2009GL040187.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., N. J. White, and R. W. Hobbs, 2009: Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 36, L00D04, doi:10.1029/2009GL040106.

    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, doi:10.1017/S0022112004002587.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, doi:10.1063/1.868656.

  • Stolt, R. H., 1978: Migration by Fourier transform. Geophysics, 43, doi:10.1190/1.1440826.

  • Thomson, D., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, doi:10.1109/PROC.1982.12433.

  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, O., 2001: Seismic Data Analysis. Society of Exploration Geophysicists, 2027 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 530 169 19
PDF Downloads 386 124 17