The East Madagascar Current: Volume Transport and Variability Based on Long-Term Observations

Leandro Ponsoni Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Texel, Netherlands

Search for other papers by Leandro Ponsoni in
Current site
Google Scholar
PubMed
Close
,
Borja Aguiar-González Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Texel, Netherlands

Search for other papers by Borja Aguiar-González in
Current site
Google Scholar
PubMed
Close
,
Herman Ridderinkhof Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Texel, Netherlands

Search for other papers by Herman Ridderinkhof in
Current site
Google Scholar
PubMed
Close
, and
Leo R. M. Maas Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Texel, and Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Leo R. M. Maas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study provides a long-term description of the poleward East Madagascar Current (EMC) in terms of its observed velocities, estimated volume transport, and variability based on both ~2.5 yr of continuous in situ measurements and ~21 yr of satellite altimeter data. An array of five moorings was deployed at 23°S off eastern Madagascar as part of the Indian–Atlantic Exchange in present and past climate (INATEX) observational program. On average, the EMC has a horizontal scale of about 60–100 km and is found from the surface to about 1000-m depth. Its time-averaged core is positioned at the surface, at approximately 20 km from the coast, with velocity of 79 (±21) cm s−1. The EMC mean volume transport is estimated to be 18.3 (±8.4) Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1). During the strongest events, maximum velocities and transport reach up to 170 cm s−1 and 50 Sv, respectively. A good agreement is found between the in situ transport estimated over the first 8 m of water column [0.32 (±0.13) Sv] with the altimetry-derived volume transport [0.28 (±0.09) Sv]. Results from wavelet analysis display a dominant nearly bimonthly (45–85 days) frequency band of transport variability, which explains about 41% of the transport variance. Altimeter data suggest that this band of variability is induced by the arrival of westward-propagating sea level anomalies, which in turn are likely represented by mesoscale cyclonic and anticyclonic eddies. Annual averages of the altimeter-derived surface transport suggest that interannual variabilities also play a role in the EMC system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0154.s1.

Corresponding author address: Leandro Ponsoni, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands. E-mail: lponsoni@nioz.nl

Abstract

This study provides a long-term description of the poleward East Madagascar Current (EMC) in terms of its observed velocities, estimated volume transport, and variability based on both ~2.5 yr of continuous in situ measurements and ~21 yr of satellite altimeter data. An array of five moorings was deployed at 23°S off eastern Madagascar as part of the Indian–Atlantic Exchange in present and past climate (INATEX) observational program. On average, the EMC has a horizontal scale of about 60–100 km and is found from the surface to about 1000-m depth. Its time-averaged core is positioned at the surface, at approximately 20 km from the coast, with velocity of 79 (±21) cm s−1. The EMC mean volume transport is estimated to be 18.3 (±8.4) Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1). During the strongest events, maximum velocities and transport reach up to 170 cm s−1 and 50 Sv, respectively. A good agreement is found between the in situ transport estimated over the first 8 m of water column [0.32 (±0.13) Sv] with the altimetry-derived volume transport [0.28 (±0.09) Sv]. Results from wavelet analysis display a dominant nearly bimonthly (45–85 days) frequency band of transport variability, which explains about 41% of the transport variance. Altimeter data suggest that this band of variability is induced by the arrival of westward-propagating sea level anomalies, which in turn are likely represented by mesoscale cyclonic and anticyclonic eddies. Annual averages of the altimeter-derived surface transport suggest that interannual variabilities also play a role in the EMC system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0154.s1.

Corresponding author address: Leandro Ponsoni, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands. E-mail: lponsoni@nioz.nl
Save
  • Azevedo, J. L. L., D. Nof, and M. M. Mata, 2012: Eddy-train encounters with a continental boundary: A South Atlantic case study. J. Phys. Oceanogr., 42, 15481565, doi:10.1175/JPO-D-11-027.1.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., 2009: A time series of Agulhas Undercurrent transport. J. Phys. Oceanogr., 39, 24362450, doi:10.1175/2009JPO4195.1.

  • Beal, L. M., and H. L. Bryden, 1997: Observations of an Agulhas Undercurrent. Deep-Sea Res. I, 44, 17151724, doi:10.1016/S0967-0637(97)00033-2.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1999: The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res., 104, 51515176, doi:10.1029/1998JC900056.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, doi:10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., S. Elipot, A. Houk, and G. M. Leber, 2015: Capturing the transport variability of a western boundary jet: Results from the Agulhas Current Time-Series Experiment (ACT). J. Phys. Oceanogr., 45, 13021324, doi:10.1175/JPO-D-14-0119.1.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, and G. J. Goni, 2008: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys. Res. Lett., 35, L12603, doi:10.1029/2008GL033957.

    • Search Google Scholar
    • Export Citation
  • Carter, E. F., and A. R. Robinson, 1987: Analysis models for the estimation of oceanic fields. J. Atmos. Oceanic Technol., 4, 4974, doi:10.1175/1520-0426(1987)004<0049:AMFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, P., S. F. DiMarco, R. E. Davis, and A. C. Coward, 2003: Flow at intermediate depths around Madagascar based on ALACE float trajectories. Deep-Sea Res. II, 50, 19571986, doi:10.1016/S0967-0645(03)00040-7.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., L. Wu, B. Qiu, S. Sun, and F. Jia, 2014: Seasonal variation of the South Equatorial Current bifurcation off Madagascar. J. Phys. Oceanogr., 44, 618631, doi:10.1175/JPO-D-13-0147.1.

    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., L. Calado, B. M. Castro, M. Cirano, J. A. M. Lima, and A. S. Mascarenhas, 2004: On the baroclinic structure of the Brazil Current–intermediate western boundary current system at 22°–23°S. Geophys. Res. Lett., 31, L14308, doi:10.1029/2004GL020036.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., A. Biastoch, S. S. Drijfhout, J. R. E. Lutjeharms, R. P. Matano, T. Pichevin, P. J. van Leeuwen, and W. Weijer, 1999: Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104, 20 88520 910, doi:10.1029/1998JC900099.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., H. Ridderinkhof, J. R. E. Lutjeharms, M. W. Schouten, and C. Veth, 2002: Observations of the flow in the Mozambique Channel. Geophys. Res. Lett., 29, doi:10.1029/2001GL013714.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., H. M. van Aken, E. J. Beier, J. R. E. Lutjeharms, R. P. Matano, and M. W. Schouten, 2004: Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep-Sea Res. I, 51, 383400, doi:10.1016/j.dsr.2003.10.011.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., H. Ridderinkhof, and M. W. Schouten, 2005: Variability of the southwest Indian Ocean. Philos. Trans. Roy. Soc. London, A363, 6376, doi:10.1098/rsta.2004.1478.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., P. Chapman, W. D. Nowlin Jr., P. Hacker, K. Donohue, M. Luther, G. C. Johnson, and J. Toole, 2002: Volume transport and property distributions of the Mozambique Channel. Deep-Sea Res. II, 49, 14811511, doi:10.1016/S0967-0645(01)00159-X.

    • Search Google Scholar
    • Export Citation
  • Duncan, C. P., 1970: The Agulhas Current. Ph.D. thesis, University of Hawaii, 76 pp.

  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, doi:10.1038/sdata.2015.28.

    • Search Google Scholar
    • Export Citation
  • Fomin, L. M., 1964: The Dynamic Method in Oceanography.Elsevier, 211 pp.

  • Gordon, A. L., R. Weiss, W. M. Smethie Jr., and M. J. Warner, 1992: Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J. Geophys. Res., 97, 72237240, doi:10.1029/92JC00485.

    • Search Google Scholar
    • Export Citation
  • Gründlingh, M. L., 1993: On the winter flow in the southern Mozambique Channel. Deep-Sea Res. I, 40, 409418, doi:10.1016/0967-0637(93)90011-Q.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861, doi:10.1063/1.1477449.

  • Haller, G., 2005: An objective definition of a vortex. J. Fluid Mech., 525, 126, doi:10.1017/S0022112004002526.

  • Harris, T. F. W., 1972: Sources of the Agulhas Current in the spring of 1964. Deep-Sea Res. Oceanogr. Abstr., 19, 633650, doi:10.1016/0011-7471(72)90091-5.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics.Academic Press, 878 pp.

  • Lutjeharms, J. R. E., 1988: Remote sensing corroboration of retroflection of the East Madagascar Current. Deep-Sea Res., 35A, 20452050, doi:10.1016/0198-0149(88)90124-0.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., 2006: The Agulhas Current.Springer, 329 pp.

  • Lutjeharms, J. R. E., N. D. Bang, and C. P. Duncan, 1981: Characteristics of the currents east and south of Madagascar. Deep-Sea Res., 28A, 879899, doi:10.1016/0198-0149(81)90008-X.

    • Search Google Scholar
    • Export Citation
  • Matano, R. P., E. J. Beier, P. T. Strub, and R. Tokmakian, 2002: Large-scale forcing of the Agulhas variability: The seasonal cycle. J. Phys. Oceanogr., 32, 12281241, doi:10.1175/1520-0485(2002)032<1228:LSFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nauw, J. J., H. M. van Aken, A. Webb, J. R. E. Lutjeharms, and W. P. M. de Ruijter, 2008: Observations of the southern East Madagascar Current and undercurrent and countercurrent system. J. Geophys. Res., 113, C08006, doi:10.1029/2007JC004639.

    • Search Google Scholar
    • Export Citation
  • New, A. L., S. G. Anderson, D. A. Smeed, and K. L. Stansfield, 2007: On the circulation of water masses across the Mascarene Plateau in the south Indian Ocean. Deep-Sea Res. I, 54, 4274, doi:10.1016/j.dsr.2006.08.016.

    • Search Google Scholar
    • Export Citation
  • Olson, D. B., and R. H. Evans, 1986: Rings of the Agulhas Current. Deep-Sea Res., 33A, 2742, doi:10.1016/0198-0149(86)90106-8.

  • Palastanga, V., P. J. van Leeuwen, and W. P. M. de Ruijter, 2006: A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability. J. Geophys. Res., 111, C09029, doi:10.1029/2005JC003081.

    • Search Google Scholar
    • Export Citation
  • Palastanga, V., P. J. van Leeuwen, M. W. Schouten, and W. P. M. de Ruijter, 2007: Flow structure and variability in the subtropical Indian Ocean: Instability of the South Indian Ocean Countercurrent. J. Geophys. Res., 112, C01001, doi:10.1029/2005JC003395.

    • Search Google Scholar
    • Export Citation
  • Polito, P. S., and O. Sato, 2015: Do eddies ride on Rossby waves? J. Geophys. Res., 120, 54175435, doi:10.1002/2015JC010737.

  • Ponsoni, L., B. Aguiar-González, L. R. M. Maas, H. M. van Aken, and H. Ridderinkhof, 2015a: Long-term observations of the East Madagascar Undercurrent. Deep-Sea Res. I, 100, 6478, doi:10.1016/j.dsr.2015.02.004.

    • Search Google Scholar
    • Export Citation
  • Ponsoni, L., B. Aguiar-González, J. J. Nauw, H. Ridderinkhof, and L. R. M. Maas, 2015b: First observational evidence of a North Madagascar Undercurrent. Dyn. Atmos. Oceans, 72, 1220, doi:10.1016/j.dynatmoce.2015.08.002.

    • Search Google Scholar
    • Export Citation
  • Quartly, G. D., J. J. H. Buck, and M. A. Srokosz, 2005: Eddy variability east of Madagascar. Philos. Trans. Roy. Soc. London, A363, 7779, doi:10.1098/rsta.2004.1479.

    • Search Google Scholar
    • Export Citation
  • Quartly, G. D., J. J. H. Buck, M. A. Srokosz, and A. C. Coward, 2006: Eddies around Madagascar—The retroflection re-considered. J. Mar. Syst., 63, 115129, doi:10.1016/j.jmarsys.2006.06.001.

    • Search Google Scholar
    • Export Citation
  • Ridderinkhof, H., and W. P. M. de Ruijter, 2003: Moored current observations in the Mozambique Channel. Deep-Sea Res. II, 50, 19331955, doi:10.1016/S0967-0645(03)00041-9.

    • Search Google Scholar
    • Export Citation
  • Ridderinkhof, H., P. M. van der Werf, J. E. Ullgren, H. M. van Aken, P. J. van Leeuwen, and W. P. M. de Ruijter, 2010: Seasonal and interannual variability in the Mozambique Channel from moored current observations. J. Geophys. Res., 115, C06010, doi:10.1029/2009JC005619.

    • Search Google Scholar
    • Export Citation
  • Ridderinkhof, W., D. Le Bars, A. S. von der Heydt, and W. P. M. de Ruijter, 2013: Dipoles of the South East Madagascar Current. Geophys. Res. Lett., 40, 558562, doi:10.1002/grl.50157.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, doi:10.1002/2014GL061773.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2013: Lagrangian motion, coherent structures, and lines of persistent material strain. Annu. Rev. Mar. Sci., 5, 137163, doi:10.1146/annurev-marine-120710-100819.

    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Fieux, J. Kindle, J. Swallow, and R. Zantopp, 1988: The boundary currents east and north of Madagascar: 2. Direct measurements and model comparisons. J. Geophys. Res., 93, 49634974, doi:10.1029/JC093iC05p04963.

    • Search Google Scholar
    • Export Citation
  • Schott, F., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Schouten, M. W., W. P. M. de Ruijter, and P. J. van Leeuwen, 2002a: Upstream control of Agulhas ring shedding. J. Geophys. Res., 107, doi:10.1029/2001JC000804.

    • Search Google Scholar
    • Export Citation
  • Schouten, M. W., W. P. M. de Ruijter, P. J. van Leeuwen, and H. A. Dijkstra, 2002b: An oceanic teleconnection between the equatorial and southern Indian Ocean. Geophys. Res. Lett., 29, doi:10.1029/2001GL014542.

    • Search Google Scholar
    • Export Citation
  • Shi, C., and D. Nof, 1993: The splitting of eddies along boundaries. J. Mar. Res., 51, 771795, doi:10.1357/0022240933223927.

  • Shi, C., and D. Nof, 1994: The destruction of lenses and generation of wodons. J. Phys. Oceanogr., 24, 11201136, doi:10.1175/1520-0485(1994)024<1120:TDOLAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., M. Rouault, and J. R. E. Lutjeharms, 2006: Structure and origin of the subtropical South Indian Ocean Countercurrent. Geophys. Res. Lett., 33, L24609, doi:10.1029/2006GL027399.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., and J. R. E. Lutjeharms, 1997: The flow field of the subtropical gyre of the South Indian Ocean. J. Geophys. Res., 102, 55135530, doi:10.1029/96JC03455.

    • Search Google Scholar
    • Export Citation
  • Swallow, J., M. Fieux, and F. Schott, 1988: The boundary currents east and north of Madagascar: 1. Geostrophic currents and transports. J. Geophys. Res., 93, 49514962, doi:10.1029/JC093iC05p04951.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ullgren, J. E., H. M. van Aken, H. Ridderinkhof, and W. P. M. de Ruijter, 2012: The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations. Deep-Sea Res. I, 69, 3650, doi:10.1016/j.dsr.2012.07.003.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., H. Ridderinkhof, and W. P. M. de Ruijter, 2004: North Atlantic deep water in the south-western Indian Ocean. Deep-Sea Res. I, 51, 755776, doi:10.1016/j.dsr.2004.01.008.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., T. Whitworth III, and J. H. LaCasce, 2002: Forced resonant undulation in the deep Mascarene basin. Deep-Sea Res. II, 49, 15131526, doi:10.1016/S0967-0645(01)00151-5.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., 2008: Normal modes of the Mascarene basin. Deep-Sea Res. I, 55, 128136, doi:10.1016/j.dsr.2007.10.005.

  • Wyrtki, K., 1971: Oceanographic Atlas of the International Indian Ocean Expedition.National Science Foundation, 531 pp.

  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608621, doi:10.1038/ngeo943.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 985 293 18
PDF Downloads 647 150 11