Seasonal Cycle of Mesoscale Instability of the West Spitsbergen Current

Wilken-Jon von Appen Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Wilken-Jon von Appen in
Current site
Google Scholar
PubMed
Close
,
Ursula Schauer Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Ursula Schauer in
Current site
Google Scholar
PubMed
Close
,
Tore Hattermann Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany, and Akvaplan-niva AS, Tromsø, Norway

Search for other papers by Tore Hattermann in
Current site
Google Scholar
PubMed
Close
, and
Agnieszka Beszczynska-Möller Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland

Search for other papers by Agnieszka Beszczynska-Möller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The West Spitsbergen Current (WSC) is a topographically steered boundary current that transports warm Atlantic Water northward in Fram Strait. The 16 yr (1997–2012) current and temperature–salinity measurements from moorings in the WSC at 78°50′N reveal the dynamics of mesoscale variability in the WSC and the central Fram Strait. A strong seasonality of the fluctuations and the proposed driving mechanisms is described. In winter, water is advected in the WSC that has been subjected to strong atmospheric cooling in the Nordic Seas, and as a result the stratification in the top 250 m is weak. The current is also stronger than in summer and has a greater vertical shear. This results in an e-folding growth period for baroclinic instabilities of about half a day in winter, indicating that the current has the ability to rapidly grow unstable and form eddies. In summer, the WSC is significantly less unstable with an e-folding growth period of 2 days. Observations of the eddy kinetic energy (EKE) show a peak in the boundary current in January–February when it is most unstable. Eddies are then likely advected westward, and the EKE peak is observed 1–2 months later in the central Fram Strait. Conversely, the EKE in the WSC as well as in the central Fram Strait is reduced by a factor of more than 3 in late summer. Parameterizations for the expected EKE resulting from baroclinic instability can account for the observed EKE values. Hence, mesoscale instability can generate the observed variability, and high-frequency wind forcing is not required to explain the observed EKE.

Denotes Open Access content.

Corresponding author address: Wilken-Jon von Appen, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany. E-mail: wilken-jon.von.appen@awi.de

Abstract

The West Spitsbergen Current (WSC) is a topographically steered boundary current that transports warm Atlantic Water northward in Fram Strait. The 16 yr (1997–2012) current and temperature–salinity measurements from moorings in the WSC at 78°50′N reveal the dynamics of mesoscale variability in the WSC and the central Fram Strait. A strong seasonality of the fluctuations and the proposed driving mechanisms is described. In winter, water is advected in the WSC that has been subjected to strong atmospheric cooling in the Nordic Seas, and as a result the stratification in the top 250 m is weak. The current is also stronger than in summer and has a greater vertical shear. This results in an e-folding growth period for baroclinic instabilities of about half a day in winter, indicating that the current has the ability to rapidly grow unstable and form eddies. In summer, the WSC is significantly less unstable with an e-folding growth period of 2 days. Observations of the eddy kinetic energy (EKE) show a peak in the boundary current in January–February when it is most unstable. Eddies are then likely advected westward, and the EKE peak is observed 1–2 months later in the central Fram Strait. Conversely, the EKE in the WSC as well as in the central Fram Strait is reduced by a factor of more than 3 in late summer. Parameterizations for the expected EKE resulting from baroclinic instability can account for the observed EKE values. Hence, mesoscale instability can generate the observed variability, and high-frequency wind forcing is not required to explain the observed EKE.

Denotes Open Access content.

Corresponding author address: Wilken-Jon von Appen, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany. E-mail: wilken-jon.von.appen@awi.de
Save
  • Aagaard, K., A. Foldvik, and S. Hillman, 1987: The West Spitsbergen Current: Disposition and water mass transformation. J. Geophys. Res., 92, 37783784, doi:10.1029/JC092iC04p03778.

    • Search Google Scholar
    • Export Citation
  • Aksenov, Y., V. Ivanov, A. Nurser, S. Bacon, I. Polyakov, A. Coward, A. Naveira-Garabato, and A. Beszczynska-Möller, 2011: The Arctic Circumpolar Boundary Current. J. Geophys. Res., 116, C09017, doi:10.1029/2010JC006637.

    • Search Google Scholar
    • Export Citation
  • AVISO, 2015: AVISO Satellite Altimetry Data: SSALTO/DUACS multimission altimeter products. AVISO, accessed 26 September 2015. [Available online at http://www.aviso.altimetry.fr/duacs/].

  • Bauerfeind, E., and Coauthors, 2009: Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: Results from the Arctic long-term observatory HAUSGARTEN. Deep-Sea Res. I, 56, 14711487, doi:10.1016/j.dsr.2009.04.011.

    • Search Google Scholar
    • Export Citation
  • Bauerfeind, E., A. Beszczynska-Möller, W.-J. von Appen, T. Soltwedel, B. Sablotny, and N. Lochthofen, 2015: Physical oceanography and current meter data from moorings at HAUSGARTEN, 2001–2014. PANGAEA, accessed 26 September 2015, doi:10.1594/PANGAEA.150005.

  • Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen, 2012: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69, 852863, doi:10.1093/icesjms/fss056.

    • Search Google Scholar
    • Export Citation
  • Beszczynska-Möller, A., W.-J. von Appen, and E. Fahrbach, 2015: Physical oceanography and current meter data from moorings F1-F14 and F15/F16 in the Fram Strait, 1997-2012. PANGAEA, accessed 26 September 2015, doi:10.1594/PANGAEA.150016.

  • Bourke, R., A. Weigel, and R. Paquette, 1988: The westward turning branch of the West Spitsbergen Current. J. Geophys. Res., 93, 14 06514 077, doi:10.1029/JC093iC11p14065.

    • Search Google Scholar
    • Export Citation
  • Boyd, T. J., and E. A. D’Asaro, 1994: Cooling of the West Spitsbergen Current: Wintertime observations west of Svalbard. J. Geophys. Res., 99, 22 59722 618, doi:10.1029/94JC01824.

    • Search Google Scholar
    • Export Citation
  • Bulczak, A. I., S. Bacon, A. C. Naveira Garabato, A. Ridout, M. J. Sonnewald, and S. W. Laxon, 2015: Seasonal variability of sea surface height in the coastal waters and deep basins of the Nordic Seas. Geophys. Res. Lett., 42, 113120, doi:10.1002/2014GL061796.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Steur, L., E. Hansen, R. Gerdes, M. Karcher, E. Fahrbach, and J. Holfort, 2009: Freshwater fluxes in the East Greenland Current: A decade of observations. Geophys. Res. Lett., 36, L23611, doi:10.1029/2009GL041278.

    • Search Google Scholar
    • Export Citation
  • de Steur, L., E. Hansen, C. Mauritzen, A. Beszczynska-Möller, and E. Fahrbach, 2014: Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009. Deep-Sea Res., 92, 2640, doi:10.1016/j.dsr.2014.05.018.

    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., J. Meincke, S. Østerhus, G. Rohardt, U. Schauer, V. Tverberg, and J. Verduin, 2001: Direct measurements of volume transports through Fram Strait. Polar Res., 20, 217224, doi:10.1111/j.1751-8369.2001.tb00059.x.

    • Search Google Scholar
    • Export Citation
  • Gascard, J.-C., C. Richez, and C. Rouault, 1995: New insights on large-scale oceanography in Fram Strait: The West Spitsbergen Current. Arctic Oceanography: Marginal Ice Zones and Continental Shelves, W. O. Smith and J. M. Grebmeir, Eds., Coastal and Estuarine Studies Series, Vol. 49, Amer. Geophys. Union, 131–182.

  • Hanzlick, D., 1984: The West Spitsbergen Current: Transport, forcing, and variability. Ph.D. thesis, University of Washington, 140 pp.

  • Heorton, H. D., D. L. Feltham, and J. C. Hunt, 2014: The response of the sea ice edge to atmospheric and oceanic jet formation. J. Phys. Oceanogr., 44, 22922316, doi:10.1175/JPO-D-13-0184.1.

    • Search Google Scholar
    • Export Citation
  • IBCAO, 2015: International Bathymetric Chart of the Arctic Ocean: Technical references & sources. IBCAO, accessed 26 September 2015. [Available online at http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/tech_sources.html.]

  • Isachsen, P. E., J. LaCasce, C. Mauritzen, and S. Häkkinen, 2003: Wind-driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean. J. Phys. Oceanogr., 33, 25342550, doi:10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., and Coauthors, 2012: The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett., 39, L12609, doi:10.1029/2012GL052219.

    • Search Google Scholar
    • Export Citation
  • Johannessen, J., and Coauthors, 1987: Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. J. Geophys. Res., 92, 67546772, doi:10.1029/JC092iC07p06754.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O., J. Johannessen, J. Morison, B. Farrelly, and E. Svendsen, 1983: Oceanographic conditions in the marginal ice zone north of Svalbard in early fall 1979 with an emphasis on mesoscale processes. J. Geophys. Res., 88, 27552769, doi:10.1029/JC088iC05p02755.

    • Search Google Scholar
    • Export Citation
  • Jónsson, S., A. Foldvik, and K. Aagaard, 1992: The structure and atmospheric forcing of the mesoscale velocity field in Fram Strait. J. Geophys. Res., 97, 12 58512 600, doi:10.1029/92JC01195.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer. Part I. Theory. J. Mar. Res., 55, 11711197, doi:10.1357/0022240973224102.

    • Search Google Scholar
    • Export Citation
  • Latarius, K., and D. Quadfasel, 2010: Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: Heat and freshwater budgets. Tellus, 62A, 497515, doi:10.1111/j.1600-0870.2010.00453.x.

    • Search Google Scholar
    • Export Citation
  • Lilly, J., P. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, doi:10.1016/j.pocean.2003.08.013.

    • Search Google Scholar
    • Export Citation
  • Manley, T., K. Hunkins, J. Villanueva, J. Van Leer, J. Gascard, and P. Jeannin, 1987: Mesoscale oceanographic processes beneath the ice of Fram Strait. Science, 236, 432434, doi:10.1126/science.236.4800.432.

    • Search Google Scholar
    • Export Citation
  • Marnela, M., B. Rudels, M.-N. Houssais, A. Beszczynska-Möller, and P. Eriksson, 2013: Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Sci., 9, 499519, doi:10.5194/os-9-499-2013.

    • Search Google Scholar
    • Export Citation
  • Nilsen, F., B. Gjevik, and U. Schauer, 2006: Cooling of the West Spitsbergen Current: Isopycnal diffusion by topographic vorticity waves. J. Geophys. Res., 111, C08012, doi:10.1029/2005JC002991.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2015: NOAA/National Climatic Data Center: Optimally interpolated daily AVHRR-AMSR sea surface temperature version 2. National Climatic Data Center, accessed 26 September 2015. [Available online at ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/NetCDF/.]

  • NODC, 2015: NOAA/National Centers for Environmental Information: Argo floats data. National Oceanographic Data Center, accessed 26 September 2015. [Available online at https://www.nodc.noaa.gov/argo/floats_data.htm.]

  • Nurser, A., and S. Bacon, 2014: The Rossby radius in the Arctic Ocean. Ocean Sci., 10, 967975, doi:10.5194/os-10-967-2014.

  • Quadfasel, D., J.-C. Gascard, and K.-P. Koltermann, 1987: Large-scale oceanography in Fram Strait during the 1984 Marginal Ice Zone Experiment. J. Geophys. Res., 92, 67196728, doi:10.1029/JC092iC07p06719.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Jones, L. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

  • Rudels, B., H. Friedrich, and D. Quadfasel, 1999: The Arctic circumpolar boundary current. Deep-Sea Res. II, 46, 10231062, doi:10.1016/S0967-0645(99)00015-6.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., G. Björk, J. Nilsson, P. Winsor, I. Lake, and C. Nohr, 2005: The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst., 55, 130, doi:10.1016/j.jmarsys.2004.06.008.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., and A. Beszczynska-Möller, 2009: Problems with estimation and interpretation of oceanic heat transport—Conceptual remarks for the case of Fram Strait in the Arctic Ocean. Ocean Sci., 5, 487494, doi:10.5194/os-5-487-2009.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt, 2004: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, doi:10.1029/2003JC001823.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., A. Beszczynska-Möller, W. Walczowski, E. Fahrbach, J. Piechura, and E. Hansen, 2008: Variation of measured heat flow through the Fram Strait between 1997 and 2006. Arctic-Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 65–85.

  • Schlichtholz, P., and M.-N. Houssais, 2011: Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area. J. Geophys. Res., 116, C01006, doi:10.1029/2009JC005944.

    • Search Google Scholar
    • Export Citation
  • Simonsen, K., and P. M. Haugan, 1996: Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res., 101, 65536576, doi:10.1029/95JC03305.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2011: On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas. J. Climate, 24, 48444858, doi:10.1175/2011JCLI4130.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2008: Lateral coupling in baroclinically unstable flows. J. Phys. Oceanogr., 38, 12671277, doi:10.1175/2007JPO3906.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. Fratantoni, and A. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, doi:10.1175/2007JPO3829.1.

    • Search Google Scholar
    • Export Citation
  • Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, doi:10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teigen, S., F. Nilsen, and B. Gjevik, 2010: Barotropic instability in the West Spitsbergen Current. J. Geophys. Res., 115, C07016, doi:10.1029/2009JC005996.

    • Search Google Scholar
    • Export Citation
  • Teigen, S., F. Nilsen, R. Skogseth, B. Gjevik, and A. Beszczynska-Möller, 2011: Baroclinic instability in the West Spitsbergen Current. J. Geophys. Res., 116, C07012, doi:10.1029/2011JC006974.

    • Search Google Scholar
    • Export Citation
  • Thomsen, S., C. Eden, and L. Czeschel, 2014: Stability analysis of the Labrador Current. J. Phys. Oceanogr., 44, 445463, doi:10.1175/JPO-D-13-0121.1.

    • Search Google Scholar
    • Export Citation
  • University of Bremen, 2015a: Institute of Environmental Physics, University of Bremen: Daily AMSR-E sea ice maps. University of Bremen, accessed 26 September 2015. [Available online at http://www.iup.uni-bremen.de/seaice/amsr/.]

  • University of Bremen, 2015b: Institute of Environmental Physics, University of Bremen: daily AMSR2 sea ice maps. University of Bremen, accessed 26 September 2015. [Available online at http://www.iup.uni-bremen.de:8084/amsr2/.]

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Voet, G., D. Quadfasel, K. Mork, and H. Søiland, 2010: The mid-depth circulation of the Nordic Seas derived from profiling float observations. Tellus, 62A, 516529, doi:10.1111/j.1600-0870.2010.00444.x.

    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., U. Schauer, R. Somavilla Cabrillo, E. Bauerfeind, and A. Beszczynska-Möller, 2015a: Physical oceanography during various cruises to the Fram Strait. PANGAEA, accessed 26 September 2015, doi:10.1594/PANGAEA.150007.

  • von Appen, W.-J., U. Schauer, R. Somavilla Cabrillo, E. Bauerfeind, and A. Beszczynska-Möller, 2015b: Exchange of warming deep waters across Fram Strait. Deep-Sea Res., 103, 86100, doi:10.1016/j.dsr.2015.06.003.

    • Search Google Scholar
    • Export Citation
  • Walczowski, W., and J. Piechura, 2007: Pathways of the Greenland Sea warming. Geophys. Res. Lett., 34, L10608, doi:10.1029/2007GL029974.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R., K. Aagaard, R. Muench, J. Gunn, G. Bjork, B. Rudels, A. Roach, and U. Schauer, 2001: The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments. Deep-Sea Res. I, 48, 17571792, doi:10.1016/S0967-0637(00)00091-1.

    • Search Google Scholar
    • Export Citation
  • Zeng, L., and G. Levy, 1995: Space and time aliasing structure in monthly mean polar-orbiting satellite data. J. Geophys. Res., 100, 51335142, doi:10.1029/94JD03252.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, A. Proshutinsky, and J. Toole, 2014: Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 88008817, doi:10.1002/2014JC010488.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 797 271 35
PDF Downloads 509 188 25