• Allison, L. C., 2009: Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline. Ph.D. thesis, University of Reading, 215 pp.

  • Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Bower, A. S., , M. S. Lozier, , S. F. Gary, , and C. W. Boning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, doi:10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8, 29672987, doi:10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , S. M. Griffies, , A. J. G. Nurser, , and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. M. C., , and A. J. Weaver, 1994: Multiple equilibria of an asymmetric two-basin ocean model. J. Phys. Oceanogr., 24, 619637, doi:10.1175/1520-0485(1994)024<0619:MEOAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huisman, S., , H. A. Dijkstra, , A. von der Heydt, , and W. P. M. de Ruijter, 2009: Robustness of multiple equilibria in the global ocean circulation. Geophys. Res. Lett., 36, L01610, doi:10.1029/2008GL036322.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Marotzke, J., , and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 13721385, doi:10.1175/1520-0485(1991)021<1372:MEOTGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., , R. D. Munday, , L. C. Allison, , R. J. Hay, , and H. L. Johnson, 2016: Gill’s model of the Antarctic Circumpolar Current, revisited: The role of latitudinal variations in wind stress. Ocean Modell., 97, 3751, doi:10.1016/j.ocemod.2015.11.010.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Nilsson, J., , P. L. Langen, , D. Ferreira, , and J. Marshall, 2013: Ocean basin geometry and the salinification of the Atlantic Ocean. J. Climate, 26, 61636184, doi:10.1175/JCLI-D-12-00358.1.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 66716681, doi:10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1961: On the temperature, salinity, and density differences between the Atlantic and Pacific Oceans in the upper kilometre. Deep-Sea Res., 7, 265275, doi:10.1016/0146-6313(61)90044-2.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., , and B. J. Haupt, 2005: How to run a minimalist’s global ocean conveyor. Geophys. Res. Lett., 32, L07610, doi:10.1029/2005GL022559.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., , and D. G. Wright, 1991: A zonally averaged ocean model for the thermohaline circulation. Part II: Interocean circulation in the Pacific-Atlantic basin system. J. Phys. Oceanogr., 21, 17251739, doi:10.1175/1520-0485(1991)021<1725:AZAOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., , and A. B. Arons, 1959: On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233, doi:10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., , G. L. Pickard, , W. J. Emery, , and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed., Academic Press, 560 pp.

  • Toggweiler, J. R., , and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., NATO ASI Series, Vol. 15, Springer, 333–366, doi:10.1007/978-3-642-84608-3_13.

  • Wolfe, C. L., , and P. Cessi, 2010: What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2015: Multiple regimes and low-frequency variability in the quasi-adiabatic overturning circulation. J. Phys. Oceanogr., 45, 16901708, doi:10.1175/JPO-D-14-0095.1.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, doi:10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 13
PDF Downloads 40 40 14

Interbasin Transport of the Meridional Overturning Circulation

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The meridional overturning circulation (MOC) is studied in an idealized domain with two basins connected by a circumpolar channel in the southernmost region. Flow is forced at the surface by longitude-independent wind stress, freshwater flux, and fast temperature relaxation to prescribed profiles. The only longitudinal asymmetry is that one basin is twice as wide as the other. Two states, a preferred one with sinking in the narrow basin and an asymmetrically forced one with sinking in the wide basin, are compared. In both cases, sinking is compensated by upwelling everywhere else, including the passive basin. Despite the greater area of the wide basin, the residual overturning transport is the same regardless of the location of sinking. The two basins exchange flow at their southern edge by a geostrophic transport balanced by the difference in the depth of isopycnals at the eastern boundaries of each basin. Gnanadesikan’s model for the upper branch of the MOC is extended to include two basins connected by a reentrant channel and is used to illustrate the basic properties of the flow: the layer containing the surface and intermediate water is shallower in the active basin than in the passive basin, and this difference geostrophically balances an exchange flow from the passive to the active basin. The exchange flow is larger when sinking occurs in the narrow basin. A visualization of the horizontal structure of the upper branch of the MOC shows that both the gyres and the meridional flow are important in determining the flow field.

Corresponding author address: C. S. Jones, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., M/C 0213, La Jolla, CA 92039-0213. E-mail: csjones@ucsd.edu

Abstract

The meridional overturning circulation (MOC) is studied in an idealized domain with two basins connected by a circumpolar channel in the southernmost region. Flow is forced at the surface by longitude-independent wind stress, freshwater flux, and fast temperature relaxation to prescribed profiles. The only longitudinal asymmetry is that one basin is twice as wide as the other. Two states, a preferred one with sinking in the narrow basin and an asymmetrically forced one with sinking in the wide basin, are compared. In both cases, sinking is compensated by upwelling everywhere else, including the passive basin. Despite the greater area of the wide basin, the residual overturning transport is the same regardless of the location of sinking. The two basins exchange flow at their southern edge by a geostrophic transport balanced by the difference in the depth of isopycnals at the eastern boundaries of each basin. Gnanadesikan’s model for the upper branch of the MOC is extended to include two basins connected by a reentrant channel and is used to illustrate the basic properties of the flow: the layer containing the surface and intermediate water is shallower in the active basin than in the passive basin, and this difference geostrophically balances an exchange flow from the passive to the active basin. The exchange flow is larger when sinking occurs in the narrow basin. A visualization of the horizontal structure of the upper branch of the MOC shows that both the gyres and the meridional flow are important in determining the flow field.

Corresponding author address: C. S. Jones, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., M/C 0213, La Jolla, CA 92039-0213. E-mail: csjones@ucsd.edu
Save