The Arctic Ocean Spices Up

Mary-Louise Timmermans Yale University, New Haven, Connecticut

Search for other papers by Mary-Louise Timmermans in
Current site
Google Scholar
PubMed
Close
and
Steven R. Jayne Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Steven R. Jayne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.

Corresponding author address: Mary-Louise Timmermans, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: mary-louise.timmermans@yale.edu

Abstract

The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.

Corresponding author address: Mary-Louise Timmermans, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: mary-louise.timmermans@yale.edu
Save
  • Aagaard, K., and P. Greisman, 1975: Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res., 80, 38213827, doi:10.1029/JC080i027p03821.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., 2007: The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep-Sea Res. II, 54, 25782598, doi:10.1016/j.dsr2.2007.08.018.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., K. Aagaard, J. H. Swift, R. G. Perkin, F. A. McLaughlin, R. W. Macdonald, and E. P. Jones, 1998: Thermohaline transitions. Physical Processes in Lakes and Oceans, Coastal and Estuarine Studies Series, Vol. 54, Amer. Geophys. Union, 179–186.

  • Ferrari, R., and D. L. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105, 16 85716 883, doi:10.1029/2000JC900057.

    • Search Google Scholar
    • Export Citation
  • Flament, P., 2002: A state variable for characterizing water masses and the diffusive stability: Spiciness. Prog. Oceanogr., 54, 493501, doi:10.1016/S0079-6611(02)00065-4.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2011: Defining the spicity. J. Mar. Res., 69, 545559, doi:10.1357/002224011799849390.

  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Iselin, C., 1939: The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Eos, Trans. Amer. Geophys. Union, 20, 414417, doi:10.1029/TR020i003p00414.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1985: An oceanographic variable for the characterization of intrusions and water masses. Deep-Sea Res. I, 32, 11951207, doi:10.1016/0198-0149(85)90003-2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res. I, 56, 20882099, doi:10.1016/j.dsr.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626629, doi:10.1175/1520-0485(1977)007<0626:ANOTLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105, doi:10.1175/2008JTECHO587.1.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, B. D., and D. E. Kelley, 2001: Growth and steady state stages of thermohaline intrusions in the Arctic Ocean. J. Geophys. Res., 106, 16 78316 794, doi:10.1029/2000JC000605.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, doi:10.1029/JC076i006p01550.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp. [Available online at www.teos-10.org/pubs/Getting_Started.pdf.]

  • McDougall, T. J., and O. A. Krzysik, 2015: Spiciness. J. Mar. Res., 73, 141152, doi:10.1357/002224015816665589.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Okuda, K., I. Yasuda, Y. Hiroe, and Y. Shimizu, 2001: Structure of subsurface intrusion of the Oyashio water into the Kuroshio Extension and formation process of the North Pacific Intermediate Water. J. Phys. Oceanogr., 57, 121140, doi:10.1023/A:1011135006278.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806, doi:10.1029/JC092iC10p10799.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., S. V. Nghiem, T. Markus, and A. Schweiger, 2007: Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. J. Geophys. Res., 112, C03005, doi:10.1029/2006JC003558.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, doi:10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526529, doi:10.1126/science.283.5401.526.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1981: Form of the temperature-salinity relationship in the Central Water: Evidence for double-diffusive mixing. J. Phys. Oceanogr., 11, 10151026, doi:10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1999: Spice and the demon. Science, 283, 498499, doi:10.1126/science.283.5401.498.

  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Stipa, T., 2002: Temperature as a passive isopycnal tracer in salty, spiceless oceans. Geophys. Res. Lett., 29, 1953, doi:10.1029/2001GL014532.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1962: On the cause of the temperature-salinity curve in the ocean. Proc. Natl. Acad. Sci. USA, 48, 764766, doi:10.1073/pnas.48.5.764.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, doi:10.1073/pnas.76.7.3051.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1993: A conjectural regulating mechanism for determining the thermohaline structure of the oceanic mixed layer. J. Phys. Oceanogr., 23, 142148, doi:10.1175/1520-0485(1993)023<0142:ACRMFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 63996406, doi:10.1002/2015GL064541.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and P. Winsor, 2013: Scales of horizontal density structure in the Chukchi Sea surface layer. Cont. Shelf Res., 52, 3945, doi:10.1016/j.csr.2012.10.015.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., S. Cole, and J. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668, doi:10.1175/JPO-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of Pacific Summer Water variability in the Arctic’s central Canada basin. J. Geophys. Res. Oceans, 119, 75237548, doi:10.1002/2014JC010273.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada basin. J. Geophys. Res., 115, C10018, doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. A. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, doi:10.5670/oceanog.2011.64.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1972: On the properties of seawater defined by temperature, salinity and pressure. J. Mar. Res., 30, 227255.

  • Wettlaufer, J., 1991: Heat flux at the ice-ocean interface. J. Geophys. Res., 96, 72157236, doi:10.1029/90JC00081.

  • Woodgate, R. A., K. Aagaard, J. H. Swift, W. M. Smethie, and K. K. Falkner, 2007: Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. J. Geophys. Res., 112, C02005, doi:10.1029/2005JC003416.

    • Search Google Scholar
    • Export Citation
  • Young, W., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, doi:10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1048 331 40
PDF Downloads 791 210 40