The Effects of Rotation and River Discharge on Net Mixing in Small-Mouth Kelvin Number Plumes

Kelly L. Cole Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Kelly L. Cole in
Current site
Google Scholar
PubMed
Close
and
Robert D. Hetland Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Robert D. Hetland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-mouth Kelvin number plumes, or plumes with a source width smaller than the deformation radius, are characterized by near-field plume regions of rapid lateral expansion and strong vertical mixing. Net plume mixing, or the dilution of a plume by ocean water between the estuary mouth and the far-field plume, is examined using idealized numerical experiments with the Regional Ocean Modeling System (ROMS). The density anomaly of plume water entering the far field is determined from isohaline analysis of the modeled salinity field. The experiments indicate that when estuarine discharge increases, net plume mixing decreases in a rotating environment but increases in a nonrotating environment. Scaling analysis supports that this opposite trend in behavior is related to rotation turning the plume, limiting the lateral expansion and suppressing shear mixing. The results of this study explain different trends in net plume mixing reported in previous studies and compare favorably to observations of the Fraser River plume.

Current affiliation: Darling Marine Center, University of Maine, Walpole, Maine.

Corresponding author address: Kelly L. Cole, Darling Marine Center, University of Maine, 193 Clarks Cove Rd., Walpole, ME 04573. E-mail: kelly.cole@maine.edu

Abstract

Small-mouth Kelvin number plumes, or plumes with a source width smaller than the deformation radius, are characterized by near-field plume regions of rapid lateral expansion and strong vertical mixing. Net plume mixing, or the dilution of a plume by ocean water between the estuary mouth and the far-field plume, is examined using idealized numerical experiments with the Regional Ocean Modeling System (ROMS). The density anomaly of plume water entering the far field is determined from isohaline analysis of the modeled salinity field. The experiments indicate that when estuarine discharge increases, net plume mixing decreases in a rotating environment but increases in a nonrotating environment. Scaling analysis supports that this opposite trend in behavior is related to rotation turning the plume, limiting the lateral expansion and suppressing shear mixing. The results of this study explain different trends in net plume mixing reported in previous studies and compare favorably to observations of the Fraser River plume.

Current affiliation: Darling Marine Center, University of Maine, Walpole, Maine.

Corresponding author address: Kelly L. Cole, Darling Marine Center, University of Maine, 193 Clarks Cove Rd., Walpole, ME 04573. E-mail: kelly.cole@maine.edu
Save
  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426, doi:10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 1060–1075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and D. G. MacDonald, 2006: Role of mixing in the structure and evolution of a buoyant discharge plume. J. Geophys. Res., 111, C11002, doi:10.1029/2006JC003563.

    • Search Google Scholar
    • Export Citation
  • Chen, F., D. G. MacDonald, and R. D. Hetland, 2009: Lateral spreading of a near-field river plume: Observations and numerical simulations. J. Geophys. Res., 114, C07013, doi:10.1029/2008JC004893.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 10 (6), 141–164.

  • Fong, D. A., and W. R. Geyer, 2001: Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 1067–1084, doi:10.1029/2000JC900134.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1982: A steady state model for buoyant surface plume hydrodynamics in coastal waters. Tellus, 34, 293–306, doi:10.1111/j.2153-3490.1982.tb01818.x.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1984: Radial spreading of buoyant, surface plumes in coastal waters. J. Geophys. Res., 89, 1989–1996, doi:10.1029/JC089iC02p01989.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1987: Estuary plumes and fronts in shelf waters: A layer model. J. Phys. Oceanogr., 17, 1877–1896, doi:10.1175/1520-0485(1987)017<1877:EPAFIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1999: Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment. J. Phys. Oceanogr., 29, 1892–1909, doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halverson, M. J., and R. Pawlowicz, 2008: Estuarine forcing of a river plume by river flow and tides. J. Geophys. Res., 113, C09033, doi:10.1029/2008JC004844.

    • Search Google Scholar
    • Export Citation
  • Halverson, M. J., and R. Pawlowicz, 2011: Entrainment and flushing time in the Fraser River estuary and plume from a steady salt balance analysis. J. Geophys. Res., 116, C08023, doi:10.1029/2010JC006793.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., 2005: Relating river plume structure to vertical mixing. J. Phys. Oceanogr., 35, 1667–1688, doi:10.1175/JPO2774.1.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., 2010: The effects of mixing and spreading on density in near-field river plumes. Dyn. Atmos. Oceans, 49, 37–53, doi:10.1016/j.dynatmoce.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and D. G. MacDonald, 2008: Spreading in the near-field Merrimack River plume. Ocean Modell., 21, 12–21, doi:10.1016/j.ocemod.2007.11.001.

    • Search Google Scholar
    • Export Citation
  • Jirka, G. H., 2007: Buoyant surface discharges into water bodies. II: Jet integral model. J. Hydrol. Eng., 133, 1021–1036, doi:10.1061/(ASCE)0733-9429(2007)133:9(1021).

    • Search Google Scholar
    • Export Citation
  • Jones, G. R., J. D. Nash, R. L. Doneker, and G. H. Jirka, 2007: Buoyant surface discharges into water bodies. I: Flow classification and prediction method. J. Hydrol. Eng., 133, 1010–1020, doi:10.1061/(ASCE)0733-9429(2007)133:9(1010).

    • Search Google Scholar
    • Export Citation
  • Jurisa, J. T., and R. J. Chant, 2013: Impact of offshore winds on a buoyant river plume system. J. Phys. Oceanogr., 43, 2571–2587, doi:10.1175/JPO-D-12-0118.1.

    • Search Google Scholar
    • Export Citation
  • Kakoulaki, G., 2015: Using Lagrangian surface drifters to study wind forcing and lateral spreading in a buoyant river plume. Ph.D. thesis, University of Massachusetts Dartmouth, 116 pp.

  • Kostaschuk, R., and L. Atwood, 1990: River discharge and tidal controls on salt-wedge position and implications for channel shoaling: Fraser River, British Columbia. Can. J. Civ. Eng., 17, 452–459, doi:10.1139/l90-049.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and K. R. Helfrich, 2002: Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech., 464, 251–278, doi:10.1017/S0022112002008868.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., R. D. Hetland, and W. R. Geyer, 2002: Long-term isohaline salt balance in an estuary. Cont. Shelf Res., 22, 1591–1601, doi:10.1016/S0278-4343(02)00023-7.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., and W. R. Geyer, 2004: Turbulent energy production and entrainment at a highly stratified estuarine front. J. Geophys. Res., 109, C05004, doi:10.1029/2003JC002094.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., and W. R. Geyer, 2005: Hydraulic control of a highly stratified estuarine front. J. Phys. Oceanogr., 35, 374–387, doi:10.1175/JPO-2692.1.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., L. Goodman, and R. D. Hetland, 2007: Turbulent dissipation in a near-field river plume: A comparison of control volume and microstructure observations with a numerical model. J. Geophys. Res., 112, C07026, doi:10.1029/2006JC004075.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary condition for long-term integration of regional oceanic models. Ocean Modell., 3, 1–20, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., B. M. Hickey, and P. MacCready, 2008: Observational estimates of entrainment and vertical salt flux in the interior of a spreading river plume. J. Geophys. Res., 113, C08027, doi:10.1029/2007JC004361.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., P. MacCready, and B. M. Hickey, 2009: Ebb-tide dynamics and spreading of a large river plume. J. Phys. Oceanogr., 39, 2839–2856, doi:10.1175/2009JPO4061.1.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, J., 1990: The formation and fate of a river plume: A numerical model. J. Phys. Oceanogr., 20, 551–569, doi:10.1175/1520-0485(1990)020<0551:TFAFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and T. L. Clark, 1986: The multidimensional positive definite advection transport algorithm: Further development and applications. J. Comput. Phys., 67, 396–438, doi:10.1016/0021-9991(86)90270-6.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., L. Arneborg, H. Burchard, V. Fiekas, H. U. Lass, V. Mohrholz, and H. Prandke, 2007: Transverse structure of turbulence in a rotating gravity current. Geophys. Res. Lett., 34, L08601, doi:10.1029/2007GL029521.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1997: A simple theory for the fate of buoyant coastal discharges. J. Phys. Oceanogr., 27, 1386–1401, doi:10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., B. M. Hickey, and A. K. Münchow, 2001: Impact of variable inflow on the dynamics of a coastal buoyant plume. J. Geophys. Res., 106, 19 809–19 824, doi:10.1029/2001JC000792.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 875 343 177
PDF Downloads 491 92 2