Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model

Maarten C. Buijsman University of Southern Mississippi, Stennis Space Center, Mississippi

Search for other papers by Maarten C. Buijsman in
Current site
Google Scholar
PubMed
Close
,
Joseph K. Ansong University of Michigan, Ann Arbor, Michigan

Search for other papers by Joseph K. Ansong in
Current site
Google Scholar
PubMed
Close
,
Brian K. Arbic University of Michigan, Ann Arbor, Michigan

Search for other papers by Brian K. Arbic in
Current site
Google Scholar
PubMed
Close
,
James G. Richman Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida

Search for other papers by James G. Richman in
Current site
Google Scholar
PubMed
Close
,
Jay F. Shriver U.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Jay F. Shriver in
Current site
Google Scholar
PubMed
Close
,
Patrick G. Timko ** Bangor University, Menai Bridge, Anglesey, United Kingdom

Search for other papers by Patrick G. Timko in
Current site
Google Scholar
PubMed
Close
,
Alan J. Wallcraft U.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Alan J. Wallcraft in
Current site
Google Scholar
PubMed
Close
,
Caitlin B. Whalen Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Caitlin B. Whalen in
Current site
Google Scholar
PubMed
Close
, and
ZhongXiang Zhao Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by ZhongXiang Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of a parameterized linear internal wave drag on the semidiurnal barotropic and baroclinic energetics of a realistically forced, three-dimensional global ocean model are analyzed. Although the main purpose of the parameterization is to improve the surface tides, it also influences the internal tides. The relatively coarse resolution of the model of ~8 km only permits the generation and propagation of the first three vertical modes. Hence, this wave drag parameterization represents the energy conversion to and the subsequent breaking of the unresolved high modes. The total tidal energy input and the spatial distribution of the barotropic energy loss agree with the Ocean Topography Experiment (TOPEX)/Poseidon (TPXO) tidal inversion model. The wave drag overestimates the high-mode conversion at ocean ridges as measured against regional high-resolution models. The wave drag also damps the low-mode internal tides as they propagate away from their generation sites. Hence, it can be considered a scattering parameterization, causing more than 50% of the deep-water dissipation of the internal tides. In the near field, most of the baroclinic dissipation is attributed to viscous and numerical dissipation. The far-field decay of the simulated internal tides is in agreement with satellite altimetry and falls within the broad range of Argo-inferred dissipation rates. In the simulation, about 12% of the semidiurnal internal tide energy generated in deep water reaches the continental margins.

The Naval Research Laboratory Contribution Number NRL/JA/7320-15-2606.

Corresponding author address: Maarten C. Buijsman, Department of Marine Science, University of Southern Mississippi, 1020 Balch Blvd., Stennis Space Center, MS 39529. E-mail: maarten.buijsman@usm.edu

Abstract

The effects of a parameterized linear internal wave drag on the semidiurnal barotropic and baroclinic energetics of a realistically forced, three-dimensional global ocean model are analyzed. Although the main purpose of the parameterization is to improve the surface tides, it also influences the internal tides. The relatively coarse resolution of the model of ~8 km only permits the generation and propagation of the first three vertical modes. Hence, this wave drag parameterization represents the energy conversion to and the subsequent breaking of the unresolved high modes. The total tidal energy input and the spatial distribution of the barotropic energy loss agree with the Ocean Topography Experiment (TOPEX)/Poseidon (TPXO) tidal inversion model. The wave drag overestimates the high-mode conversion at ocean ridges as measured against regional high-resolution models. The wave drag also damps the low-mode internal tides as they propagate away from their generation sites. Hence, it can be considered a scattering parameterization, causing more than 50% of the deep-water dissipation of the internal tides. In the near field, most of the baroclinic dissipation is attributed to viscous and numerical dissipation. The far-field decay of the simulated internal tides is in agreement with satellite altimetry and falls within the broad range of Argo-inferred dissipation rates. In the simulation, about 12% of the semidiurnal internal tide energy generated in deep water reaches the continental margins.

The Naval Research Laboratory Contribution Number NRL/JA/7320-15-2606.

Corresponding author address: Maarten C. Buijsman, Department of Marine Science, University of Southern Mississippi, 1020 Balch Blvd., Stennis Space Center, MS 39529. E-mail: maarten.buijsman@usm.edu
Save
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 2211–2222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 65–69, doi:10.1038/nature14399.

    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 6057–6071, doi:10.1002/2015JC010998.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 3069–3101, doi:10.1016/j.dsr2.2004.09.014.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., A. Wallcraft, and E. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175–187, doi:10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. Richman, J. Shriver, P. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20–29, doi:10.5670/oceanog.2012.38.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320–327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic Cartesian coordinates. Ocean Modell., 4, 55–88, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., C. Jackson, and J. C. McWilliams, 2010: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, doi:10.1029/2009JC006004.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 1337–1356, doi:10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2014: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850–869, doi:10.1175/JPO-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft, 2015: Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modell., 85, 42–55, doi:10.1016/j.ocemod.2014.11.003.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523–536, doi:10.1002/2013JC009293.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 2093–2106, doi:10.1175/JPO-D-13-0224.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimetry data. J. Geophys. Res., 106, 22 475–22 502, doi:10.1029/2000JC000699.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. Bennett, and M. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99, 24 821–24 852, doi:10.1029/94JC01894.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the Last Glacial Maximum. J. Geophys. Res., 109, C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 3225–3244, doi:10.1175/JPO-D-14-0002.1.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 2302–2315, doi:10.1175/JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Green, J. A. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104–119, doi:10.1175/JPO-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2005: A thermobaric instability of Lagrangian vertical coordinate ocean models. Ocean Modell., 8, 279–300, doi:10.1016/j.ocemod.2004.01.001.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26, 913–940, doi:10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811–814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272–290, doi:10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 4689–4693, doi:10.1002/grl.50872.

    • Search Google Scholar
    • Export Citation
  • Kerry, C., B. Powell, and G. Carter, 2013: Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43, 187–204, doi:10.1175/JPO-D-12-081.1.

    • Search Google Scholar
    • Export Citation
  • Kerry, C., B. Powell, and G. Carter, 2014: The impact of subtidal circulation on internal-tide-induced mixing in the Philippine Sea. J. Phys. Oceanogr., 44, 3209–3224, doi:10.1175/JPO-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380–399, doi:10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 1949–1964, doi:10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394–415, doi:10.1007/s10236-006-0086-x.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. M. Klymak, and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 3–16, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 1772–1794, doi:10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. S. Carter, and T. Peacock, 2014: Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. Oceans, 119, 2165–2182, doi:10.1002/2013JC009152.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602–615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., H. E. Hurlburt, X. Xu, J. F. Shriver, A. L. Gordon, J. Sprintall, R. D. Susanto, and H. M. van Aken, 2010: Simulated and observed circulation in the Indonesian Seas: 1/12° global HYCOM and the INSTANT observations. Dyn. Atmos. Oceans, 50, 275–300, doi:10.1016/j.dynatmoce.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Müller, M., J. Cherniawsky, M. Foreman, and J.-S. von Storch, 2012: Global map of M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modelling. Geophys. Res. Lett., 39, L19607, doi:10.1029/2012GL053320.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 1117–1134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493–502, doi:10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2014: Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modell., 80, 59–73, doi:10.1016/j.ocemod.2014.05.003.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tide. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 1759–1779, doi:10.1175/JPO-D-12-0207.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231–246, doi:10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2015: Incoherent signature of internal tides on sea level in idealized numerical simulations. Geophys. Res. Lett., 42, 1520–1526, doi:10.1002/2014GL062583.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Ocean self-attraction and loading in numerical tidal models. Mar. Geod., 21, 181–192, doi:10.1080/01490419809388134.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15, 99–108, doi:10.5670/oceanog.2002.40.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., J. G. Richman, and B. K. Arbic, 2014: How stationary are the internal tides in a high-resolution global ocean circulation model? J. Geophys. Res. Oceans, 119, 2769–2787, doi:10.1002/2013JC009423.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245–263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 1999: Resistance to barotropic tidal flow in straits by baroclinic wave drag. J. Phys. Oceanogr., 29, 191–197, doi:10.1175/1520-0485(1999)029<0191:RTBTFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft, 2012: Skill tests of three-dimensional tidal currents in a global ocean model: A look at the North Atlantic. J. Geophys. Res., 117, C08014, doi:10.1029/2011JC007617.

    • Search Google Scholar
    • Export Citation
  • Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft, 2013: Skill testing a three-dimensional global tide model to historical current meter records. J. Geophys. Res. Oceans, 118, 6914–6933, doi:10.1002/2013JC009071.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 1854–1872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 1174–1188, doi:10.1175/JPO-D-14-0167.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538–557, doi:10.1175/JPO-D-12-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713–736, doi:10.1175/2009JPO4207.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. Alford, and J. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25, 42–51, doi:10.5670/oceanog.2012.40.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 2635–2651, doi:10.1175/2008JPO4136.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 592 264 22
PDF Downloads 393 156 4