Three-Dimensional Chaotic Advection by Mixed Layer Baroclinic Instabilities

Daniel Mukiibi Institute of Oceanography, University of Hamburg, Hamburg, Germany

Search for other papers by Daniel Mukiibi in
Current site
Google Scholar
PubMed
Close
,
Gualtiero Badin Institute of Oceanography, University of Hamburg, Hamburg, Germany

Search for other papers by Gualtiero Badin in
Current site
Google Scholar
PubMed
Close
, and
Nuno Serra Institute of Oceanography, University of Hamburg, Hamburg, Germany

Search for other papers by Nuno Serra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three-dimensional (3D) finite-time Lyapunov exponents (FTLEs) are computed from numerical simulations of a freely evolving mixed layer (ML) front in a zonal channel undergoing baroclinic instability. The 3D FTLEs show a complex structure, with features that are less defined than the two-dimensional (2D) FTLEs, suggesting that stirring is not confined to the edges of vortices and along filaments and posing significant consequences on mixing. The magnitude of the FTLEs is observed to be strongly determined by the vertical shear. A scaling law relating the local FTLEs and the nonlocal density contrast used to initialize the ML front is derived assuming thermal wind balance. The scaling law only converges to the values found from the simulations within the pycnocline, while it displays differences within the ML, where the instabilities show a large ageostrophic component. The probability distribution functions of 2D and 3D FTLEs are found to be non-Gaussian at all depths. In the ML, the FTLEs wavenumber spectra display −1 slopes, while in the pycnocline, the FTLEs wavenumber spectra display −2 slopes, corresponding to frontal dynamics. Close to the surface, the geodesic Lagrangian coherent structures (LCSs) reveal a complex stirring structure, with elliptic structures detaching from the frontal region. In the pycnocline, LCSs are able to detect filamentary structures that are not captured by the Eulerian fields.

Corresponding author address: Gualtiero Badin, Institute of Oceanography, University of Hamburg, Bundesstraße 53, D-20146 Hamburg, Germany. E-mail: gualtiero.badin@uni-hamburg.de

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

Three-dimensional (3D) finite-time Lyapunov exponents (FTLEs) are computed from numerical simulations of a freely evolving mixed layer (ML) front in a zonal channel undergoing baroclinic instability. The 3D FTLEs show a complex structure, with features that are less defined than the two-dimensional (2D) FTLEs, suggesting that stirring is not confined to the edges of vortices and along filaments and posing significant consequences on mixing. The magnitude of the FTLEs is observed to be strongly determined by the vertical shear. A scaling law relating the local FTLEs and the nonlocal density contrast used to initialize the ML front is derived assuming thermal wind balance. The scaling law only converges to the values found from the simulations within the pycnocline, while it displays differences within the ML, where the instabilities show a large ageostrophic component. The probability distribution functions of 2D and 3D FTLEs are found to be non-Gaussian at all depths. In the ML, the FTLEs wavenumber spectra display −1 slopes, while in the pycnocline, the FTLEs wavenumber spectra display −2 slopes, corresponding to frontal dynamics. Close to the surface, the geodesic Lagrangian coherent structures (LCSs) reveal a complex stirring structure, with elliptic structures detaching from the frontal region. In the pycnocline, LCSs are able to detect filamentary structures that are not captured by the Eulerian fields.

Corresponding author address: Gualtiero Badin, Institute of Oceanography, University of Hamburg, Bundesstraße 53, D-20146 Hamburg, Germany. E-mail: gualtiero.badin@uni-hamburg.de

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Save
  • Abraham, E. R., and M. M. Bowen, 2002: Chaotic stirring by a mesoscale surface-ocean flow. Chaos, 12, 373381, doi:10.1063/1.1481615.

  • Aref, H., 1984: Stirring by chaotic advection. J. Fluid Mech., 143, 121, doi:10.1017/S0022112084001233.

  • Aref, H., 2002: The development of chaotic advection. Phys. Fluids, 14, 13151325, doi:10.1063/1.1458932.

  • Badin, G., 2013: Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn., 107, 526540, doi:10.1080/03091929.2012.740479.

    • Search Google Scholar
    • Export Citation
  • Badin, G., 2014: On the role of non-uniform stratification and short-wave instabilities in three-layer quasi-geostrophic turbulence. Phys. Fluids, 26, 096603, doi:10.1063/1.4895590.

    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, J. T. Holt, and L. J. Fernand, 2009: Are mesoscale eddies in shelf seas formed by baroclinic instability of tidal fronts? J. Geophys. Res., 114, C10021, doi:10.1029/2009JC005340.

    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, and J. Sharples, 2010: Water-mass transformation in the shelf seas. J. Mar. Res., 68, 189214, doi:10.1357/002224010793721442.

    • Search Google Scholar
    • Export Citation
  • Badin, G., A. Tandon, and A. Mahadevan, 2011: Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr., 41, 20802101, doi:10.1175/JPO-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, Z. Jing, and L. Wu, 2013: Water-mass transformations in the Southern Ocean diagnosed from observations: Contrasting effects of air–sea fluxes and diapycnal mixing. J. Phys. Oceanogr., 43, 14721484, doi:10.1175/JPO-D-12-0216.1.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, doi:10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and M. J. Olascoaga, 2009: An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida shelf. J. Phys. Oceanogr., 39, 17431755, doi:10.1175/2009JPO4046.1.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, and G. J. Goni, 2008: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys. Res. Lett., 35, L12603, doi:10.1029/2008GL033957.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, M. G. Brown, H. Koçak, and I. I. Rypina, 2010: Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos, 20, 017514, doi:10.1063/1.3271342.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Y. Wang, M. J. Olascoaga, J. G. Goni, and G. Haller, 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, doi:10.1175/JPO-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Bettencourt, J. H., C. Lopez, and E. Hernandez-Garcia, 2012: Oceanic three-dimensional Lagrangian coherent structures: A study of a mesoscale eddy in the Benguela upwelling region. Ocean Modell., 51, 7383, doi:10.1016/j.ocemod.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Blazevski, D., and G. Haller, 2014: Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D, 273–274, 4662, doi:10.1016/j.physd.2014.01.007.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., G. Lacorata, G. Redaelli, and A. Vulpiani, 2001: Detecting barriers to transport: A review of different techniques. Physica D, 159, 5870, doi:10.1016/S0167-2789(01)00330-X.

    • Search Google Scholar
    • Export Citation
  • Boyd, J., 1992: The energy spectrum of fronts: time evolution and shocks in Burgers’ equation. J. Atmos. Sci., 49, 128139, doi:10.1175/1520-0469(1992)049<0128:TESOFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calil, P. H., and K. J. Richards, 2010: Transient upwelling hot spots in the oligotrophic North Pacific. J. Geophys. Res., 115, C02003, doi:10.1029/2009JC005360.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klimak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Cole, S. T., and D. L. Rudnick, 2012: The spatial distribution and annual cycle of upper-ocean thermohaline structure. J. Geophys. Res., 117, C02027, doi:10.1029/2011JC007033.

    • Search Google Scholar
    • Export Citation
  • Cole, S. T., D. L. Rudnick, and J. Colosi, 2010: Seasonal evolution of upper-ocean horizontal structure and the remnant mixed layer. J. Geophys. Res., 115, C04012, doi:10.1029/2009JC005654.

    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., J. Isern-Fontanet, C. Lopez, E. Hernandez-Garcia, and E. Garcia-Ladon, 2009: Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep-Sea Res. I, 56, 1531, doi:10.1016/j.dsr.2008.07.014.

    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., S. D. Monte, S. Alvain, Y. Dandonneau, and M. Lévy, 2010: Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. USA, 107, 18 36618 370, doi:10.1073/pnas.1004620107.

    • Search Google Scholar
    • Export Citation
  • Farazmand, M., and G. Haller, 2012: Computing Lagrangian coherent structures from their variational theory. Chaos, 22, 013128, doi:10.1063/1.3690153.

    • Search Google Scholar
    • Export Citation
  • Farazmand, M., D. Blazevski, and G. Haller, 2014: Shearless transport barriers in unsteady two-dimensional flows and maps. Physica D, 278-279, 4457, doi:10.1016/j.physd.2014.03.008.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. L. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105, 16 85716 883, doi:10.1029/2000JC900057.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, doi:10.1175/2007JPO3788.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2000: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10, 99108, doi:10.1063/1.166479.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149, 248277, doi:10.1016/S0167-2789(00)00199-8.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861, doi:10.1063/1.1477449.

  • Haller, G., 2011: A variational theory of hyperbolic Lagrangian coherent structures. Physica D, 240, 574598, doi:10.1016/j.physd.2010.11.010.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2015: Lagrangian coherent structures. Annu. Rev. Fluid Mech., 47, 137162, doi:10.1146/annurev-fluid-010313-141322.

  • Haller, G., and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147, 352370, doi:10.1016/S0167-2789(00)00142-1.

    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. J. Beron-Vera, 2012: Geodesic theory of transport barriers in two-dimensional flows. Physica D, 241, 16801702, doi:10.1016/j.physd.2012.06.012.

    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. J. Beron-Vera, 2013: Coherent Lagrangian vortices: The black holes of turbulence. J. Fluid Mech., 731, R4, doi:10.1017/jfm.2013.391.

    • Search Google Scholar
    • Export Citation
  • Harle, M., and U. Feudel, 2007: Hierarchy of islands in conservative systems yields multimodal distributions of FTLEs. Chaos Solitons Fractals, 31, 130137, doi:10.1016/j.chaos.2005.09.031.

    • Search Google Scholar
    • Export Citation
  • Harrison, C. S., and G. A. Glatzmaier, 2012: Lagrangian coherent structures in the California Current System—Sensitives and limitations. Geophys. Astrophys. Fluid Dyn., 106, 2224, doi:10.1080/03091929.2010.532793.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2001: Vertical shear plus horizontal stretching as a route to mixing. From Stirring to Mixing in a Stratified Ocean: Proc. 12th ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 73–79.

  • Haynes, P., and J. Anglade, 1997: The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 11211136, doi:10.1175/1520-0469(1997)054<1121:TVSCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., W. Crawford, M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2015: Along-isopycnal variability of spice in the North Pacific. J. Geophys. Res. Oceans, 120, 22872307, doi:10.1002/2013JC009421.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. M. Klymak, R. C. Lien, R. Ferrari, C. M. Lee, M. A. Sundermeyer, and L. Goodman, 2015: Submesoscale water-mass spectra in the Sargasso Sea. J. Phys. Oceanogr., 45, 13251338, doi:10.1175/JPO-D-14-0108.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2002: Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Chaos, 12, 688698, doi:10.1063/1.1499395.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., S. C. Shadden, and J. E. Marsden, 2007: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48, 065404, doi:10.1063/1.2740025.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A. Treguier, 2001: Impacts of submesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, doi:10.1357/002224001762842181.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2006: Modelling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14, 222240, doi:10.1016/j.ocemod.2006.05.005.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, doi:10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., L. P. A. Adcroft, C. Hill, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. N. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J. Geophys. Res., 102, 57535752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. Haller, T. Peacock, J. E. Rupert-Felsot, and H. L. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98, 144502, doi:10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., and J. C. McWilliams, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Norgard, G., and P. Bremer, 2012: Second derivative ridges are straight lines and the implications for computing Lagrangian coherent structures. Physica D, 241, 14751476, doi:10.1016/j.physd.2012.05.006.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, doi:10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and G. Haller, 2012: Forecasting sudden changes in environmental pollution patterns. Proc. Natl. Acad. Sci. USA, 109, 47384743, doi:10.1073/pnas.1118574109.

    • Search Google Scholar
    • Export Citation
  • Onu, K., F. Huhn, and G. Haller, 2015: LCS tool: A computational platform for Lagrangian coherent structures. J. Comput. Sci., 7, 2636, doi:10.1016/j.jocs.2014.12.002.

    • Search Google Scholar
    • Export Citation
  • Ottino, J. M., 1990: Mixing, chaotic advection and turbulence. Annu. Rev. Fluid Mech., 22, 207254, doi:10.1146/annurev.fl.22.010190.001231.

    • Search Google Scholar
    • Export Citation
  • Peacock, T., and G. Haller, 2013: Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys. Today, 66, 4147, doi:10.1063/PT.3.1886.

    • Search Google Scholar
    • Export Citation
  • Peikert, R., D. Günther, and T. Weinkauf, 2013: Comment on “Second derivative ridges are straight lines and the implications for computing Lagrangian coherent structures, Physica D 2012.05.006.” Physica D, 242, 6566, doi:10.1016/j.physd.2012.09.002.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., I. I. Rypina, T. M. Öezgökmen, P. Wang, H. Childs, and Y. Bebieva, 2013: Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J. Fluid Mech., 738, 143183, doi:10.1017/jfm.2013.583.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ragone, F., and G. Badin, 2016: A study of surface semi-geostrophic turbulence: Freely decaying dynamics. J. Fluid Mech., 792, 740774, doi:10.1017/jfm.2016.116.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Koçak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64, 35953610, doi:10.1175/JAS4036.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, J. Pullen, J. Levin, and A. L. Gordon, 2010: Chaotic advection in an archipelago. J. Phys. Oceanogr., 40, 19882006, doi:10.1175/2010JPO4336.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, P. Wang, T. Oezgoekmen, and I. Mezic, 2015: Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy. Chaos, 25, 087401, doi:10.1063/1.4916086.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271304, doi:10.1016/j.physd.2005.10.007.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., and Coauthors, 2015: The Latmix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, doi:10.1175/BAMS-D-14-00015.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501, doi:10.1175/2009JPO4103.1.

    • Search Google Scholar
    • Export Citation
  • Sulman, M. H. M., H. S. Huntley, B. L. Lipphardt Jr., and A. D. Kirwan Jr., 2013: Leaving flatland: Diagnostics for Lagrangian coherent structures in three-dimensional flows. Physica D, 258, 7792, doi:10.1016/j.physd.2013.05.005.

    • Search Google Scholar
    • Export Citation
  • Szezech, J. D. J., S. R. Lopes, and R. L. Viana, 2005: Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems. Phys. Lett., 335A, 394401, doi:10.1016/j.physleta.2004.12.058.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, doi:10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1995: Geostrophic adjustment and restratification of a mixed layer with horizontal gradients above a stratified layer. J. Phys. Oceanogr., 25, 22292241, doi:10.1175/1520-0485(1995)025<2229:GAAROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2009: On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech., 622, 103113, doi:10.1017/S0022112008005272.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and T. M. Joyce, 2010: Subduction in the northern and southern flanks of the Gulf Stream. J. Phys. Oceanogr., 40, 429438, doi:10.1175/2009JPO4187.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modelling in an Eddying Regime, Geophys. Monogr., Vol. 177, 1738, doi:10.1029/177GM04.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, doi:10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Voth, G. A., G. Haller, and J. P. Gollub, 2002: Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett., 88, 254501, doi:10.1103/PhysRevLett.88.254501.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and E. R. Abraham, 2008: Stirring in the global surface ocean. Geophys. Res. Lett., 35, L20605, doi:10.1029/2008GL035526.

  • Waugh, D. W., S. R. Keating, and M. Chen, 2012: Diagnosing ocean stirring: Comparison of relative dispersion and finite-time Lyapunov exponents. J. Phys. Oceanogr., 42, 11731185, doi:10.1175/JPO-D-11-0215.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Wiggins, S., 2005: The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech., 37, 295328, doi:10.1146/annurev.fluid.37.061903.175815.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, doi:10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1147 791 13
PDF Downloads 196 41 4