Structure of the Airflow above Surface Waves

Marc P. Buckley College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Marc P. Buckley in
Current site
Google Scholar
PubMed
Close
and
Fabrice Veron College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Fabrice Veron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In recent years, much progress has been made to quantify the momentum exchange between the atmosphere and the oceans. The role of surface waves on the airflow dynamics is known to be significant, but our physical understanding remains incomplete. The authors present detailed airflow measurements taken in the laboratory for 17 different wind wave conditions with wave ages [determined by the ratio of the speed of the peak waves Cp to the air friction velocity u* (Cp/u*)] ranging from 1.4 to 66.7. For these experiments, a combined particle image velocimetry (PIV) and laser-induced fluorescence (LIF) technique was developed. Two-dimensional airflow velocity fields were obtained as low as 100 μm above the air–water interface. Temporal and spatial wave field characteristics were also obtained. When the wind stress is too weak to generate surface waves, the mean velocity profile follows the law of the wall. With waves present, turbulent structures are directly observed in the airflow, whereby low-horizontal-velocity air is ejected away from the surface and high-velocity fluid is swept downward. Quadrant analysis shows that such downward turbulent momentum flux events dominate the turbulent boundary layer. Airflow separation is observed above young wind waves (Cp/u*< 3.7), and the resulting spanwise vorticity layers detached from the surface produce intense wave-coherent turbulence. On average, the airflow over young waves (with Cp/u* = 3.7 and 6.5) is sheltered downwind of wave crests, above the height of the critical layer zc [defined by 〈u(zc)〉 = Cp]. Near the surface, the coupling of the airflow with the waves causes a reversed, upwind sheltering effect.

Denotes Open Access content.

Current affiliation: Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.

Corresponding author address: Marc Buckley, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany. E-mail: mbuckley@udel.edu

Abstract

In recent years, much progress has been made to quantify the momentum exchange between the atmosphere and the oceans. The role of surface waves on the airflow dynamics is known to be significant, but our physical understanding remains incomplete. The authors present detailed airflow measurements taken in the laboratory for 17 different wind wave conditions with wave ages [determined by the ratio of the speed of the peak waves Cp to the air friction velocity u* (Cp/u*)] ranging from 1.4 to 66.7. For these experiments, a combined particle image velocimetry (PIV) and laser-induced fluorescence (LIF) technique was developed. Two-dimensional airflow velocity fields were obtained as low as 100 μm above the air–water interface. Temporal and spatial wave field characteristics were also obtained. When the wind stress is too weak to generate surface waves, the mean velocity profile follows the law of the wall. With waves present, turbulent structures are directly observed in the airflow, whereby low-horizontal-velocity air is ejected away from the surface and high-velocity fluid is swept downward. Quadrant analysis shows that such downward turbulent momentum flux events dominate the turbulent boundary layer. Airflow separation is observed above young wind waves (Cp/u*< 3.7), and the resulting spanwise vorticity layers detached from the surface produce intense wave-coherent turbulence. On average, the airflow over young waves (with Cp/u* = 3.7 and 6.5) is sheltered downwind of wave crests, above the height of the critical layer zc [defined by 〈u(zc)〉 = Cp]. Near the surface, the coupling of the airflow with the waves causes a reversed, upwind sheltering effect.

Denotes Open Access content.

Current affiliation: Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.

Corresponding author address: Marc Buckley, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany. E-mail: mbuckley@udel.edu
Save
  • Adrian, R. J., 2007: Hairpin vortex organization in wall turbulence. Phys. Fluids, 19, 041301, doi:10.1063/1.2717527.

  • Alves, J. H. G., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 13011323, doi:10.1175/1520-0485(2003)033<1301:RTPALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: The influence of wave breaking on the surface pressure distribution in wind-wave interactions. J. Fluid Mech., 211, 463495, doi:10.1017/S0022112090001653.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and O. Phillips, 1974: On the incipient breaking of small scale waves. J. Fluid Mech., 65, 647656, doi:10.1017/S0022112074001583.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. K. Melville, 1976: On the separation of air flow over water waves. J. Fluid Mech., 77, 825842, doi:10.1017/S0022112076002905.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 1998: Tangential stress beneath wind-driven air-water interfaces. J. Fluid Mech., 364, 115145, doi:10.1017/S0022112098001128.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G., and I. Proudman, 1954: The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math., 7, 83103, doi:10.1093/qjmam/7.1.83.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1993: Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109148, doi:10.1017/S0022112093003350.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, doi:10.1146/annurev.fluid.30.1.507.

    • Search Google Scholar
    • Export Citation
  • Bliven, L., N. Huang, and S. Long, 1986: Experimental study of the influence of wind on Benjamin-Feir sideband instability. J. Fluid Mech., 162, 237260, doi:10.1017/S0022112086002033.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., K. Mogensen, J.-R. Bidlot, M. A. Balmaseda, and P. A. Janssen, 2015: Surface wave effects in the NEMO ocean model: Forced and coupled experiments. J. Geophys. Res. Oceans, 120, 29732992, doi:10.1002/2014JC010565.

    • Search Google Scholar
    • Export Citation
  • Breuer, M., N. Peller, C. Rapp, and M. Manhart, 2009: Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids, 38, 433457, doi:10.1016/j.compfluid.2008.05.002.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., 1978: The numerical simulation of wind-wave interaction. J. Fluid Mech., 87, 561582, doi:10.1017/S0022112078001767.

  • Chambers, A. J., and R. A. Antonia, 1981: Wave-induced effect on the Reynolds shear stress and heat flux in the marine surface layer. J. Phys. Oceanogr., 11, 116121, doi:10.1175/1520-0485(1981)011<0116:WIEOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P. C., E. J. Plate, and G. M. Hidy, 1971: Turbulent air flow over the dominant component of wind-generated water waves. J. Fluid Mech., 47, 183208, doi:10.1017/S0022112071001009.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-hurricane. J. Atmos. Sci., 70, 31983215, doi:10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and S. Belcher, 1999: Turbulent shear flow over fast-moving waves. J. Fluid Mech., 386, 345371, doi:10.1017/S0022112099004383.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 2001: Air-Sea Interaction: Laws and Mechanisms. Cambridge University Press, 248 pp.

  • Davis, R. E., 1970: On the turbulent flow over a wavy boundary. J. Fluid Mech., 42, 721731, doi:10.1017/S002211207000157X.

  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1995: Reply. J. Phys. Oceanogr., 25, 19081909, doi:10.1175/1520-0485(1995)025<1908:R>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duncan, J., H. Qiao, V. Philomin, and A. Wenz, 1999: Gentle spilling breakers: Crest profile evolution. J. Fluid Mech., 379, 191222, doi:10.1017/S0022112098003152.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341–356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and P. A. Taylor, 1977: A note on separation over short wind waves. Bound.-Layer Meteor., 11, 6587, doi:10.1007/BF00221825.

    • Search Google Scholar
    • Export Citation
  • Grachev, A., and C. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, doi:10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grare, L., L. Lenain, and W. K. Melville, 2013a: Wave-coherent airflow and critical layers over ocean waves. J. Phys. Oceanogr., 43, 21562172, doi:10.1175/JPO-D-13-056.1.

    • Search Google Scholar
    • Export Citation
  • Grare, L., W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli, and V. Makin, 2013b: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550, doi:10.1017/jfm.2013.88.

    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245, doi:10.1017/S0022112002001945.

    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, doi:10.1175/JPO-D-14-0116.1.

    • Search Google Scholar
    • Export Citation
  • Hristov, T., C. Friehe, and S. Miller, 1998: Wave-coherent fields in air flow over ocean waves: Identification of cooperative behavior buried in turbulence. Phys. Rev. Lett., 81, 5245, doi:10.1103/PhysRevLett.81.5245.

    • Search Google Scholar
    • Export Citation
  • Hristov, T., S. Miller, and C. Friehe, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422, 5558, doi:10.1038/nature01382.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-T., E. Y. Hsu, and R. L. Street, 1981: On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed, wave-following co-ordinate system. J. Fluid Mech., 105, 87117, doi:10.1017/S0022112081003121.

    • Search Google Scholar
    • Export Citation
  • Jiménez, J., 2012: Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech., 44, 2745, doi:10.1146/annurev-fluid-120710-101039.

  • Jones, I. S., and Y. Toba, 2001: Wind Stress over the Ocean. Cambridge University Press, 328 pp.

  • Kawai, S., 1981: Visualization of airflow separation over wind-wave crests under moderate wind. Bound.-Layer Meteor., 21, 93104, doi:10.1007/BF00119370.

    • Search Google Scholar
    • Export Citation
  • Kawamura, H., and Y. Toba, 1988: Ordered motion in the turbulent boundary layer over wind waves. J. Fluid Mech., 197, 105135, doi:10.1017/S0022112088003192.

    • Search Google Scholar
    • Export Citation
  • Kendall, J. M., 1970: The turbulent boundary layer over a wall with progressive surface waves. J. Fluid Mech., 41, 259281, doi:10.1017/S0022112070000617.

    • Search Google Scholar
    • Export Citation
  • Kihara, N., H. Hanazaki, T. Mizuya, and H. Ueda, 2007: Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids, 19, 015102, doi:10.1063/1.2409736.

  • Kim, H., S. Kline, and W. Reynolds, 1971: The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech., 50, 133160, doi:10.1017/S0022112071002490.

    • Search Google Scholar
    • Export Citation
  • Kline, S., W. Reynolds, F. Schraub, and P. Runstadler, 1967: The structure of turbulent boundary layers. J. Fluid Mech., 30, 741773, doi:10.1017/S0022112067001740.

    • Search Google Scholar
    • Export Citation
  • Kovasznay, L. S., 1970: The turbulent boundary layer. Annu. Rev. Fluid Mech., 2, 95112, doi:10.1146/annurev.fl.02.010170.000523.

  • Lin, M.-Y., C.-H. Moeng, W.-T. Tsai, P. P. Sullivan, and S. E. Belcher, 2008: Direct numerical simulation of wind-wave generation processes. J. Fluid Mech., 616, 130, doi:10.1017/S0022112008004060.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: Action of a variable stress at the surface of water waves. Phys. Fluids, 12, 737740, doi:10.1063/1.1692549.

    • Search Google Scholar
    • Export Citation
  • Makin, V., V. Kudryavtsev, and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor., 73, 159182, doi:10.1007/BF00708935.

    • Search Google Scholar
    • Export Citation
  • Mastenbroek, C., V. Makin, M. Garat, and J.-P. Giovanangeli, 1996: Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech., 318, 273302, doi:10.1017/S0022112096007124.

    • Search Google Scholar
    • Export Citation
  • Meinhart, C. D., and R. J. Adrian, 1995: On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids, 7, 694696, doi:10.1063/1.868594.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1983: Wave modulation and breakdown. J. Fluid Mech., 128, 489506, doi:10.1017/S0022112083000579.

  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204, doi:10.1017/S0022112057000567.

  • Miles, J. W., 1959: On the generation of surface waves by shear flows: Part 3. Kelvin-Helmholtz instability. J. Fluid Mech., 6, 583598, doi:10.1017/S0022112059000842.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1993: Surface-wave generation revisited. J. Fluid Mech., 256, 427441, doi:10.1017/S0022112093002836.

  • Miller, M., T. Nennstiel, J. H. Duncan, A. A. Dimas, and S. Pröstler, 1999: Incipient breaking of steady waves in the presence of surface wakes. J. Fluid Mech., 383, 285305, doi:10.1017/S0022112098004029.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, doi:10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Okuda, K., S. Kawai, and Y. Toba, 1977: Measurement of skin friction distribution along the surface of wind waves. J. Oceanogr. Soc. Japan, 33, 190198, doi:10.1007/BF02109691.

    • Search Google Scholar
    • Export Citation
  • Oppenheim, A. V., and R. W. Schafer, 2013: Discrete-Time Signal Processing. 3rd ed. Pearson Education, 1120 pp.

  • Perlin, M., W. Choi, and Z. Tian, 2013: Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech., 45, 115145, doi:10.1146/annurev-fluid-011212-140721.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417445, doi:10.1017/S0022112057000233.

  • Phillips, O. M., 1977: Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Raffel, M., C. E. Willert, S. T. Wereley, and J. Kompenhans, 2007: Particle Image Velocimetry: A Practical Guide. 2nd ed. Springer, 448 pp.

  • Reul, N., H. Branger, and J. P. Giovanangeli, 1999: Air flow separation over unsteady breaking waves. Phys. Fluids, 11, 19591961, doi:10.1063/1.870058.

    • Search Google Scholar
    • Export Citation
  • Reul, N., H. Branger, and J.-P. Giovanangeli, 2008: Air flow structure over short-gravity breaking water waves. Bound.-Layer Meteor., 126, 477505, doi:10.1007/s10546-007-9240-3.

    • Search Google Scholar
    • Export Citation
  • Robinson, S. K., 1991: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech., 23, 601639, doi:10.1146/annurev.fl.23.010191.003125.

    • Search Google Scholar
    • Export Citation
  • Schlichting, H., and K. Gersten, 2000: Boundary-Layer Theory. 8th ed. Springer, 799 pp.

  • Simpson, R. L., 1989: Turbulent boundary-layer separation. Annu. Rev. Fluid Mech., 21, 205232, doi:10.1146/annurev.fl.21.010189.001225.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air-sea interaction during swell conditions. J. Geophys. Res., 104, 25 83325 851, doi:10.1029/1999JC900213.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, doi:10.1146/annurev-fluid-121108-145541.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, doi:10.1017/S0022112099006965.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, doi:10.1175/JAS-D-14-0095.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, M., S. Misra, C. Kambhamettu, and J. Kirby, 2005: A robust motion estimation algorithm for PIV. Meas. Sci. Technol., 16, 865877, doi:10.1088/0957-0233/16/3/031.

    • Search Google Scholar
    • Export Citation
  • Veron, F., G. Saxena, and S. K. Misra, 2007: Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett., 34, 19591961, doi:10.1029/2007GL031242.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., H. Eckelmann, and R. S. Brodkey, 1972: The wall region in turbulent shear flow. J. Fluid Mech., 54, 3948, doi:10.1017/S0022112072000515.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willmarth, W., and S. Lu, 1972: Structure of the Reynolds stress near the wall. J. Fluid Mech., 55, 6592, doi:10.1017/S002211207200165X.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1975: Wind-induced drift currents. J. Fluid Mech., 68, 4970, doi:10.1017/S0022112075000687.

  • Wu, J.-Z., H.-Y. Ma, and M. D. Zhou, 2006: Vorticity and Vortex Dynamics. Springer, 776 pp.

  • Yang, D., and L. Shen, 2010: Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech., 650, 131180, doi:10.1017/S0022112009993557.

    • Search Google Scholar
    • Export Citation
  • Yao, A., and C. H. Wu, 2005: Incipient breaking of unsteady waves on sheared currents. Phys. Fluids, 17, 082104, doi:10.1063/1.2000276.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1739 643 40
PDF Downloads 1265 413 32