Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback

Vladimir Ivanov Arctic and Antarctic Research Institute, St. Petersburg, Russia
Hydrometeorological Centre of Russia, Moscow, Russia
A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Vladimir Ivanov in
Current site
Google Scholar
PubMed
Close
,
Vladimir Alexeev International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Vladimir Alexeev in
Current site
Google Scholar
PubMed
Close
,
Nikolay V. Koldunov ** Climate Service Center 2.0, Helmholtz-Zentrum Geesthacht, Hamburg, Germany

Search for other papers by Nikolay V. Koldunov in
Current site
Google Scholar
PubMed
Close
,
Irina Repina A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia
Space Research Institute, Moscow, Russia
Hydrometeorological Centre of Russia, Moscow, Russia

Search for other papers by Irina Repina in
Current site
Google Scholar
PubMed
Close
,
Anne Britt Sandø Institute of Marine Research, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Anne Britt Sandø in
Current site
Google Scholar
PubMed
Close
,
Lars Henrik Smedsrud Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Lars Henrik Smedsrud in
Current site
Google Scholar
PubMed
Close
, and
Alexander Smirnov Arctic and Antarctic Research Institute, St. Petersburg, Russia

Search for other papers by Alexander Smirnov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Broad, long-living, ice-free areas in midwinter northeast of Svalbard between 2011 and 2014 are investigated. The formation of these persistent and reemerging anomalies is linked, hypothetically, with the increased seasonality of Arctic sea ice cover, enabling an enhanced influence of oceanic heat on sea ice and, in particular, heat transported by Atlantic Water. The “memory” of ice-depleted conditions in summer is transferred to the fall season through excess heat content in the upper mixed layer, which in turn transfers to midwinter via thinner and younger ice. This thinner ice is more fragile and mobile, thus facilitating the formation of polynyas and leads. When openings in ice cover form along the Atlantic Water pathway, weak density stratification at the mixed layer base supports the development of thermohaline convection, which further entrains warm and salty water from deeper layers. Convection-induced upward heat flux from the Atlantic layer retards ice formation, either keeping ice thickness low or blocking ice formation entirely. Certain stages of this chain of events have been examined in a region north of Svalbard and Franz Joseph Land, between 80° and 83°N and 15° and 60°E, where the top hundred meters of Atlantic inflow through the Fram Strait cools and freshens rapidly. Complementary research methods, including statistical analyses of observations and numerical modeling, are used to support the basic concept that the recently observed retreat of sea ice northeast of Svalbard in winter may be explained by a positive feedback between summer ice decay and the growing influence of oceanic heat on a seasonal time scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0144.s1.

Corresponding author address: Vladimir Ivanov, Arctic and Antarctic Research Institute, 38 Bering Str. 199397, St. Petersburg, Russia. E-mail: vladimir.ivanov@aari.ru

Abstract

Broad, long-living, ice-free areas in midwinter northeast of Svalbard between 2011 and 2014 are investigated. The formation of these persistent and reemerging anomalies is linked, hypothetically, with the increased seasonality of Arctic sea ice cover, enabling an enhanced influence of oceanic heat on sea ice and, in particular, heat transported by Atlantic Water. The “memory” of ice-depleted conditions in summer is transferred to the fall season through excess heat content in the upper mixed layer, which in turn transfers to midwinter via thinner and younger ice. This thinner ice is more fragile and mobile, thus facilitating the formation of polynyas and leads. When openings in ice cover form along the Atlantic Water pathway, weak density stratification at the mixed layer base supports the development of thermohaline convection, which further entrains warm and salty water from deeper layers. Convection-induced upward heat flux from the Atlantic layer retards ice formation, either keeping ice thickness low or blocking ice formation entirely. Certain stages of this chain of events have been examined in a region north of Svalbard and Franz Joseph Land, between 80° and 83°N and 15° and 60°E, where the top hundred meters of Atlantic inflow through the Fram Strait cools and freshens rapidly. Complementary research methods, including statistical analyses of observations and numerical modeling, are used to support the basic concept that the recently observed retreat of sea ice northeast of Svalbard in winter may be explained by a positive feedback between summer ice decay and the growing influence of oceanic heat on a seasonal time scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0144.s1.

Corresponding author address: Vladimir Ivanov, Arctic and Antarctic Research Institute, 38 Bering Str. 199397, St. Petersburg, Russia. E-mail: vladimir.ivanov@aari.ru
Save
  • Aagaard, K., A. Foldvik, and S. R. Hillman, 1987: The West Spitsbergen Current—Disposition and water mass transformation. J. Geophys. Res., 92, 37783784, doi:10.1029/JC092iC04p03778.

    • Search Google Scholar
    • Export Citation
  • Alekseev, G. V., V. V. Ivanov, and A. A. Korablev, 1994: Interannual variability of thermohaline conditions in the convective gyre of the Greenland Sea. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 485–496.

  • Alexeev, V. A., V. V. Ivanov, R. Kwok, L.-H. Smedsrud, and J. Zhang, 2013: North Atlantic warming and declining volume of Arctic sea ice. Cryosphere Discuss., 7, 245265, doi:10.5194/tcd-7-245-2013.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. Deweaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1 (updated yearly). National Snow and Ice Data Center, accessed 2 April 2016, doi:10.5067/8GQ8LZQVL0VL.

  • Cotel, A. J., 2010: A review of recent developments on turbulent entrainment in stratified flows. Phys. Scr., 2010, 014044, doi:10.1088/0031-8949/2010/T142/014044.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dethleff, D., 2010: Linear model estimates of potential salt rejection and theoretical salinity increase in a standardized water column of recurrent Arctic flaw leads and polynyas. Cold Reg. Sci. Technol., 61, 8289, doi:10.1016/j.coldregions.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Du, P., E. Girard, A. K. Bertram, and M. D. Shupe, 2011: Modeling of the cloud and radiation processes observed during SHEBA. Atmos. Res., 101, 911927, doi:10.1016/j.atmosres.2011.05.018.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falk-Petersen, S., V. Pavlov, J. Berge, F. Cottier, K. M. Kovacs, and C. Lydersen, 2015: At the rainbow’s end: High productivity fueled by winter upwelling along an Arctic shelf. Polar Biol., 38, 511, doi:10.1007/s00300-014-1482-1.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., 1975: Penetrative convection in the absence of mean shear. Quart. J. Roy. Meteor. Soc., 101, 869891, doi:10.1002/qj.49710143011.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Ivanov, V. V., and Coauthors, 2009: Seasonal variability in Atlantic Water off Spitsbergen. Deep-Sea Res. I, 56, 114, doi:10.1016/j.dsr.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., V. A. Alexeev, I. Repina, N. V. Koldunov, and A. V. Smirnov, 2012: Tracing Atlantic Water signature in the Arctic sea ice cover east of Svalbard. Adv. Meteor., 2012, 201818, doi:10.1155/2012/201818.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., V. A. Alexeev, T. A. Alexeeva, N. V. Koldunov, I. A. Repina, and A. V. Smirnov, 2013: Does Arctic Ocean ice cover become seasonal? (in Russian with English abstract). Issled. Zemli Kosmosa, 4, 5065.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., E. V. Shalina, and M. W. Miles, 1999: Satellite evidence for an Arctic sea ice cover in transformation. Science, 286, 19371939, doi:10.1126/science.286.5446.1937.

    • Search Google Scholar
    • Export Citation
  • Koldunov, N. V., A. Köhl, and D. Stammer, 2013: Properties of adjoint sea ice sensitivities to atmospheric forcing and implications for the causes of the long term trend of Arctic sea ice. Climate Dyn., 41, 227241, doi:10.1007/s00382-013-1816-7.

    • Search Google Scholar
    • Export Citation
  • Korablev, A. A., A. V. Smirnov, and O. K. Baranova, 2014: Climatological atlas of the Nordic Seas and northern North Atlantic, version 2.2. National Oceanographic Data Center/NOAA dataset, accessed 2 April 2016, doi:10.7289/V54B2Z78.

  • Kraus, E., and J. Turner, 1967: A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98106, doi:10.1111/j.2153-3490.1967.tb01462.x.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and G. F. Cunningham, M. Wesnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean ice cover: 2003–2008. J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Langehaug, H. R., F. Geyer, L. H. Smedsrud, and Y. Gao, 2013: Arctic sea ice decline and ice export in the CMIP5 historical simulations. Ocean Modell., 71, 114126, doi:10.1016/j.ocemod.2012.12.006.

    • Search Google Scholar
    • Export Citation
  • Linders, J., and G. Björk, 2013: The melt-freeze cycle of the Arctic Ocean ice cover and its dependence on ocean stratification. J. Geophys. Res. Oceans, 118, 59635976, doi:10.1002/jgrc.20409.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. J. Schweiger, and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Maqueda, M. A., A. J. Willmott, and N. R. T. Biggs, 2004: Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116.

    • Search Google Scholar
    • Export Citation
  • Martin, S., and D. J. Cavalieri, 1989: Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water. J. Geophys. Res., 94, 12 72512 738, doi:10.1029/JC094iC09p12725.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J., and J. Stroeve, 1999: Near-real-time DMSP SSMIS daily polar gridded sea ice concentrations. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at https://nsidc.org/data/docs/daac/nsidc0081_ssmi_nrt_seaice.gd.html.]

  • Maykut, G. A., 1986: The surface heat and salt balance. The Geophysics of Sea Ice, N. Untersteiner, Ed., Plenum, 395–463.

  • Nikiforov, Ye. G., and A. O. Shpaikher, 1980: Features of the Formation of Hydrological Regime Large-Scale Variations in the Arctic Ocean (in Russian). Hydrometeoizdat, 269 pp.

  • Notz, D., and J. Marotzke, 2012: Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett., 39, L08502, doi:10.1029/2012GL051094.

    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., L. H. Smedsrud, R. B. Ingvaldsen, and F. Nilsen, 2014: Loss of sea ice during winter north of Svalbard. Tellus, 66A, 23 933, doi:10.3402/tellusa.v66.23933.

    • Search Google Scholar
    • Export Citation
  • Perovich, D., J. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Perovich, D., J. Richter-Menge, C. Polashenski, B. Elder, T. Arbetter, and O. Brennick, 2014: Sea ice mass balance observations from the North Pole Environmental Observatory. Geophys. Res. Lett., 41, 20192025, doi:10.1002/2014GL059356.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 27432756, doi:10.1175/2010JPO4339.1.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2011: Fate of early 2000’s Arctic warm water pulse. Bull. Amer. Meteor. Soc., 92, 561565, doi:10.1175/2010BAMS2921.1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., C. M. Lee, and R. A. Woodgate, 2011: Impact of wind-driven mixing in the Arctic Ocean. Oceanography, 24, 136145, doi:10.5670/oceanog.2011.65.

    • Search Google Scholar
    • Export Citation
  • Randelhoff, A., A. Sundfjord, and M. Reigstad, 2015: Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett., 42, 34423449, doi:10.1002/2015GL063655.

    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J., D. K. Perovich, and W. S. Pegau, 2001: Summer ice dynamics during SHEBA and its effect on the ocean heat content. Ann. Glaciol., 33, 201206, doi:10.3189/172756401781818176.

    • Search Google Scholar
    • Export Citation
  • Roach, A. T., K. Aagaard, and F. D. Carsey, 1993: Coupled ice-ocean variability in the Greenland Sea. Atmos.–Ocean, 31, 319337, doi:10.1080/07055900.1993.9649474.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., Y. Yu, and G. A Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 34693472, doi:10.1029/1999GL010863.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., 1990: Haline convection in the Greenland Sea. Deep-Sea Res., 37, 14911511, doi:10.1016/0198-0149(90)90139-M.

  • Rudels, B., L. G. Anderson, and E.-P. Jones, 1996: Formation and evolution of the surface mixed layer of the Arctic Ocean. J. Geophys. Res., 101, 88078821, doi:10.1029/96JC00143.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., H. J. Friedrich, D. Hainbucher, and G. Lohmann, 1999: On the parameterisation of oceanic sensible heat loss to the atmosphere and to ice in an ice-covered mixed layer in winter. Deep-Sea Res. II, 46, 13851425, doi:10.1016/S0967-0645(99)00028-4.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., P. E. Jones, U. Schauer, and P. Eriksson, 2004: Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res., 23, 181208, doi:10.1111/j.1751-8369.2004.tb00007.x.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., M. Korhonen, U. Schauer, S. Pisarev, B. Rabe, and A. Wisotzki, 2014: Circulation and transformation of Atlantic water in the Eurasian basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog. Oceanogr., 132, 128152, doi:10.1016/j.pocean.2014.04.003.

    • Search Google Scholar
    • Export Citation
  • Sandø, A. B., Y. Gao, and H. R. Langehaug, 2014: Poleward ocean heat transports, sea ice processes, and Arctic sea ice variability in NorESM1-M simulations. J. Geophys. Res. Oceans, 119, 20952108, doi:10.1002/2013JC009435.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., and A. Beszczynska-Möller, 2009: Problems with estimation and interpretation of oceanic heat transport—Conceptual remarks for the case of Fram Strait in the Arctic Ocean. Ocean Sci., 5, 487494, doi:10.5194/os-5-487-2009.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2009: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J. Phys. Oceanogr., 39, 30493069, doi:10.1175/2009JPO4172.1.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., R. D. Muench, and C. H. Pease, 1990: Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res., 95, 94619479, doi:10.1029/JC095iC06p09461.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Zhang, and W. Ermold, 2010: Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J. Geophys. Res., 115, C11004, doi:10.1029/2009JC005849.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timokhov, L., and F. Tanis, Eds., 1997: Environmental working group joint U.S.-Russian atlas of the Arctic Ocean, version 1. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g01961.]

  • Turner, J., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • UNESCO, 1981: The practical salinity scale 1978 and the international equation of state of seawater. UNESCO Tech. Papers in Marine Science 36, 25 pp.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., S. Bouillon, T. Fichefet, H. Goosse, and O. Lecomte, 2012: LIM The Louvain-la-Neuve sea Ice Model. Note du Pôle de mod’elisation de l’Institut Pierre-Simon Laplace 31, 85 pp. [Available online at http://www.nemo-ocean.eu/Media/Files/Vancoppenolle_LIM3_book_NPM31_2012.]

  • Vinje, T., 2001: Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Climate, 14, 255267, doi:10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walczowski, W., J. Piechura, I. Goszczko, and P. Wieczorek, 2012: Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci., 69, 864869, doi:10.1093/icesjms/fss068.

    • Search Google Scholar
    • Export Citation
  • Zubov, N. N., 1947: Dynamical Oceanology (in Russian). Gidrometeoizdat, 430 pp.

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, W. J. Campbell, F. D. Carsey, and P. Gloersen, 1983: Antarctic sea ice, 1973–1976: Satellite passive-microwave observation. NASA Tech. Rep. NASA-SP-459, 222 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840002650.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1371 571 47
PDF Downloads 693 254 24