An Assessment of the Seasonal Salinity Budget for the Upper Bay of Bengal

Earle A. Wilson School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Earle A. Wilson in
Current site
Google Scholar
PubMed
Close
and
Stephen C. Riser School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Stephen C. Riser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During each summer monsoon, the Bay of Bengal is inundated by a large amount of rain and river discharge. The effects of this freshening are gradually reversed over the course of the year, with near-surface salinities typically returning to their presummer monsoon levels before the start of the next rainy season. While the forcing responsible for the summertime freshening is clear, the processes that act to restore the bay’s salinity are not well understood. To examine these processes, the authors construct a basin-integrated, near-surface, seasonal salinity budget using data-assimilated output from the Hybrid Coordinate Ocean Model (HYCOM). From this salinity budget, it is deduced that vertical salt fluxes are primarily responsible for counterbalancing the near-surface freshening caused by the summertime freshwater fluxes. These vertical salt fluxes are largest during the months that immediately follow the summer monsoon, when the near-surface halocline is strongest. These results must be tempered with the knowledge that HYCOM misrepresents some key features of the bay’s salinity field. In particular, the model tends to overestimate salinity along the East Indian Coastal Current during its equatorward phase. Notwithstanding these biases, these results still suggest that vertical processes have a prominent role in the bay’s near-surface salinity budget.

Denotes Open Access content.

Corresponding author address: Earle Wilson, School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195. E-mail: earlew@uw.edu

Abstract

During each summer monsoon, the Bay of Bengal is inundated by a large amount of rain and river discharge. The effects of this freshening are gradually reversed over the course of the year, with near-surface salinities typically returning to their presummer monsoon levels before the start of the next rainy season. While the forcing responsible for the summertime freshening is clear, the processes that act to restore the bay’s salinity are not well understood. To examine these processes, the authors construct a basin-integrated, near-surface, seasonal salinity budget using data-assimilated output from the Hybrid Coordinate Ocean Model (HYCOM). From this salinity budget, it is deduced that vertical salt fluxes are primarily responsible for counterbalancing the near-surface freshening caused by the summertime freshwater fluxes. These vertical salt fluxes are largest during the months that immediately follow the summer monsoon, when the near-surface halocline is strongest. These results must be tempered with the knowledge that HYCOM misrepresents some key features of the bay’s salinity field. In particular, the model tends to overestimate salinity along the East Indian Coastal Current during its equatorward phase. Notwithstanding these biases, these results still suggest that vertical processes have a prominent role in the bay’s near-surface salinity budget.

Denotes Open Access content.

Corresponding author address: Earle Wilson, School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195. E-mail: earlew@uw.edu
Save
  • Akhil, V. P., and Coauthors, 2014: A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J. Geophys. Res. Oceans, 119, 39263947, doi:10.1002/2013JC009632.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., and L. F. Smedstad, 2002: Global river inflow within the Navy Coastal Ocean Model. Proc. Oceans ‘02 MTS/IEEE, Biloxi, MS, IEEE, 14721479, doi:10.1109/OCEANS.2002.1191855.

  • Benshila, R., F. Durand, S. Masson, R. Bourdallé-Badie, C. de Boyer Montégut, F. Papa, and G. Madec, 2014: The upper Bay of Bengal salinity structure in a high resolution model. Ocean Modell., 74, 3652, doi:10.1016/j.ocemod.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp.

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaitanya, A. V. S., and Coauthors, 2014: Salinity measurements collected by fishermen reveal a “river in the sea” flowing along the eastern coast of India. Bull. Amer. Meteor. Soc., 95, 18971908, doi:10.1175/BAMS-D-12-00243.1.

    • Search Google Scholar
    • Export Citation
  • Chaitanya, A. V. S., and Coauthors, 2015: Observed year-to-year sea surface salinity variability in the Bay of Bengal during the 2009–2014 period. Ocean Dyn., 65, 173186, doi:10.1007/s10236-014-0802-x.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, doi:10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • D’Addezio, J. M., B. Subrahmanyam, E. S. Nyadjro, and V. S. N. Murty, 2015: Seasonal variability of salinity and salt transport in the northern Indian Ocean. J. Phys. Oceanogr., 45, 19471966, doi:10.1175/JPO-D-14-0210.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durand, F., D. Shankar, F. Birol, and S. S. C. Shenoi, 2009: Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res., 114, C02013, doi:10.1029/2008JC004807.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., M. Ravichandran, M. J. McPhaden, and R. R. Rao, 2013: Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 24262437, doi:10.1002/jgrc.20192.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 24282446, doi:10.1175/1520-0485(1993)023<2428:RFFAAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and Coauthors, 2014: US navy operational global ocean and Arctic ice prediction systems. Oceanography, 27, 3243, doi:10.5670/oceanog.2014.66.

    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. R. R. Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, doi:10.1029/2012JC008433.

    • Search Google Scholar
    • Export Citation
  • Nyadjro, E. S., B. Subrahmanyam, V. S. N. Murty, and J. F. Shriver, 2010: Salt transport in the near-surface layer in the monsoon-influenced Indian Ocean using HYCOM. Geophys. Res. Lett., 37, L15603, doi:10.1029/2010GL044127.

    • Search Google Scholar
    • Export Citation
  • Pant, V., M. S. Girishkumar, T. V. S. Udaya Bhaskar, M. Ravichandran, F. Papa, and V. P. Thangaprakash, 2015: Observed interannual variability of near-surface salinity in the Bay of Bengal. J. Geophys. Res. Oceans, 120, 33153329, doi:10.1002/2014JC010340.

    • Search Google Scholar
    • Export Citation
  • Papa, F., F. Durand, W. B. Rossow, A. Rahman, and S. K. Bala, 2010: Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res., 115, C12013, doi:10.1029/2009JC006075.

    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, doi:10.1029/2001JC000907.

    • Search Google Scholar
    • Export Citation
  • Riser, S., J. Nystuen, and A. Rogers, 2008: Monsoon effects in the Bay of Bengal inferred from profiling float-based measurements of wind speed and rainfall. Limnol. Oceanogr., 53, 20802093, doi:10.4319/lo.2008.53.5_part_2.2080.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15, 99108, doi:10.5670/oceanog.2002.40.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 92723 942, doi:10.1029/2000JC900089.

    • Search Google Scholar
    • Export Citation
  • Schiller, R. V., and V. H. Kourafalou, 2010: Model river plume dynamics with the hybrid coordinate ocean model. Ocean Modell., 33, 101117, doi:10.1016/j.ocemod.2009.12.005.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, doi:10.1029/2001GL013587.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. Bharath Raj, and S. S. C. Shenoi, 2006: Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian Ocean. Geophys. Res. Lett., 33, L22609, doi:10.1029/2006GL027573.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. R. Goddalehundi, and D. S. Anitha, 2008: Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos. Sci. Lett., 9, 16, doi:10.1002/asl.162.

    • Search Google Scholar
    • Export Citation
  • Sharma, R., N. Agarwal, I. M. Momin, S. Basu, and V. K. Agarwal, 2010: Simulated sea surface salinity variability in the tropical Indian Ocean. J. Climate, 23, 65426554, doi:10.1175/2010JCLI3721.1.

    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., A. D. Gouveia, D. Shankar, S. S. C. Shenoi, P. N. Vinayachandran, S. Sundar, G. S. Michael, and G. Nampoothiri, 1996: Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J. Geophys. Res., 101, 14 01114 025, doi:10.1029/95JC03307.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thadathil, P., P. M. Muraleedharan, R. R. Rao, Y. K. Somayajulu, G. V. Reddy, and C. Revichandran, 2007: Observed seasonal variability of barrier layer in the Bay of Bengal. J. Geophys. Res., 112, C02009, doi:10.1029/2006JC003651.

    • Search Google Scholar
    • Export Citation
  • TRMM, 2013: Daily TRMM and others rainfall estimate (3B42 V7 derived), version 7. Goddard Space Flight Center Distributed Active Archive Center, accessed 31 October 2013. [Available online at http://disc.sci.gsfc.nasa.gov/datacollection/TRMM_3B42_daily_V7.html.]

  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and sub-seasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493, doi:10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., V. S. N. Murty, and V. Ramesh Babu, 2002: Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res., 107, 8018, doi:10.1029/2001JC000831.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., D. Shankar, S. Vernekar, K. K. Sandeep, P. Amol, C. P. Neema, and A. Chatterjee, 2013: A summer monsoon pump to keep the Bay of Bengal salty. Geophys. Res. Lett., 40, 17771782, doi:10.1002/grl.50274.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 777 181 28
PDF Downloads 793 147 39