Turbulent Diffusivity under High Winds from Acoustic Measurements of Bubbles

D. W. Wang Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by D. W. Wang in
Current site
Google Scholar
PubMed
Close
,
H. W. Wijesekera Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by H. W. Wijesekera in
Current site
Google Scholar
PubMed
Close
,
E. Jarosz Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by E. Jarosz in
Current site
Google Scholar
PubMed
Close
,
W. J. Teague Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by W. J. Teague in
Current site
Google Scholar
PubMed
Close
, and
W. S. Pegau Oil Spill Recovery Institute, Cordova, Alaska

Search for other papers by W. S. Pegau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Breaking surface waves generate layers of bubble clouds as air parcels entrain into the upper ocean through the action of turbulent motions. The turbulent diffusivity in the bubble cloud layer is investigated by combining measurements of surface winds, waves, bubble acoustic backscatter, currents, and hydrography. These measurements were made at water depths of 60–90 m on the shelf of the Gulf of Alaska near Kayak Island during late December 2012, a period when the ocean was experiencing winds and significant wave heights up to 22 m s−1 and 9 m, respectively. Vertical profiles of acoustic backscatter decayed exponentially from the wave surface with e-folding lengths of about 0.6 to 6 m, while the bubble penetration depths were about 3 to 30 m. Both e-folding lengths and bubble depths were highly correlated with surface wind and wave conditions. The turbulent diffusion coefficients, inferred from e-folding length and bubble depth, varied from about 0.01 to 0.4 m2 s−1. Analysis suggests that the turbulent diffusivity in the bubble layer can be parameterized as a function of the cube of the wind friction velocity with a proportionality coefficient that depends weakly on wave age. Furthermore, in the bubble layer, on average, the shear production of the turbulent kinetic energy estimated by the diffusion coefficients is a similar order of magnitude as the dissipation rate predicted by the wall boundary layer theory.

Corresponding author address: David W. Wang, Naval Research Laboratory, 1009 Balch Blvd., Stennis Space Center, MS 39529. E-mail: david.wang@nrlssc.navy.mil

Abstract

Breaking surface waves generate layers of bubble clouds as air parcels entrain into the upper ocean through the action of turbulent motions. The turbulent diffusivity in the bubble cloud layer is investigated by combining measurements of surface winds, waves, bubble acoustic backscatter, currents, and hydrography. These measurements were made at water depths of 60–90 m on the shelf of the Gulf of Alaska near Kayak Island during late December 2012, a period when the ocean was experiencing winds and significant wave heights up to 22 m s−1 and 9 m, respectively. Vertical profiles of acoustic backscatter decayed exponentially from the wave surface with e-folding lengths of about 0.6 to 6 m, while the bubble penetration depths were about 3 to 30 m. Both e-folding lengths and bubble depths were highly correlated with surface wind and wave conditions. The turbulent diffusion coefficients, inferred from e-folding length and bubble depth, varied from about 0.01 to 0.4 m2 s−1. Analysis suggests that the turbulent diffusivity in the bubble layer can be parameterized as a function of the cube of the wind friction velocity with a proportionality coefficient that depends weakly on wave age. Furthermore, in the bubble layer, on average, the shear production of the turbulent kinetic energy estimated by the diffusion coefficients is a similar order of magnitude as the dissipation rate predicted by the wall boundary layer theory.

Corresponding author address: David W. Wang, Naval Research Laboratory, 1009 Balch Blvd., Stennis Space Center, MS 39529. E-mail: david.wang@nrlssc.navy.mil
Save
  • Anis, A., and J. N. Moum, 1995: Surface wave-turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25, 20252044, doi:10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bakhoday Paskyabi, M., and I. Fer, 2014: The influence of surface gravity waves on the injection of turbulence in the upper ocean. Nonlinear Processes Geophys., 21, 713733, doi:10.5194/npg-21-713-2014.

    • Search Google Scholar
    • Export Citation
  • Benilov, A. Y., and L. N. Ly, 2002: Modeling of surface waves breaking effects in the ocean upper layer. Math. Comput. Modell., 35, 191213, doi:10.1016/S0895-7177(01)00159-5.

    • Search Google Scholar
    • Export Citation
  • BioSonics, 2004: DT4 data file format specification. BioSonics Software and Engineering Library Rep. BS&E-2004-07-0009-1.3, 33 pp.

  • Craig, P. D., and M. L. Banner, 1994: Modeling wave enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dahl, P. H., and A. T. Jessup, 1995: On bubble clouds produced by breaking waves: An event analysis of ocean acoustic measurements. J. Geophys. Res., 100, 50075020, doi:10.1029/94JC03019.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox‐Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, doi:10.1002/2013GL058193.

    • Search Google Scholar
    • Export Citation
  • Dean, R. G., and R. A. Dalrymple, 1991: Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering, Vol. 2, World Scientific, 370 pp.

  • Depew, D. C., A. W. Stevens, R. E. H. Smith, and R. E. Hecky, 2009: Detection and characterization of benthic filamentous algal stands on rocky substrata using a high frequency echosounder. Limnol. Oceanogr. Methods, 7, 693705, doi:10.4319/lom.2009.7.693.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes in TOGA COARE. J. Geophys. Res., 101, 37473767, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., S. Vagle, and M. Li, 1999: Wave breaking, turbulence and bubble distributions in the ocean surface layer. The Wind-Driven Air–Sea Interface, M. Banner, Ed., School of Mathematics, University of New South Wales, 187–192.

  • Feddersen, F., J. H. Trowbridge, and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 17641777, doi:10.1175/JPO3098.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gemmrich, J. R., and D. M. Farmer, 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29, 480499, doi:10.1175/1520-0485(1999)029<0480:NSTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086, doi:10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10751096, doi:10.1175/2008JPO4044.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. D., and R. C. Cooke, 1979: Bubble population and spectra in coastal waters. J. Geophys. Res., 84, 37613766, doi:10.1029/JC084iC07p03761.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., G. S. Young, B. A. Colle, and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437453, doi:10.1175/MWR3037.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and A. Blumberg, 2004: Wave breaking and ocean surface thermal response. J. Phys. Oceanogr., 34, 693698, doi:10.1175/2517.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and M. Lu, 1990: Acoustically relevant bubble assemblages and their dependence on meteorological parameters. IEEE J. Oceanic Eng., 15, 340349, doi:10.1109/48.103530.

    • Search Google Scholar
    • Export Citation
  • Neumann, G., 1952: On Wind Generated Waves with Special Reference to the Problem of Wave Forecasting. New York University, College of Engineering, Department of Meteorology, 136 pp.

  • Neumann, G., and W. J. Pierson Jr., 1966: Principles of Physical Oceanography. Prentice-Hall, 545 pp.

  • Olson, J. B., B. A. Colle, N. A. Bond, and N. Winstead, 2007: A comparison of two coastal barrier jet events along the southeast Alaskan coast during the SARJET field experiment. Mon. Wea. Rev., 135, 36423663, doi:10.1175/MWR3448.E1.

    • Search Google Scholar
    • Export Citation
  • Perkins, H., F. De Strobel, and L. Gauldesi, 2000: The Barny Sentinel trawl-resistant ADCP bottom mount: Design, testing, and application. IEEE J. Oceanic Eng., 25, 430436, doi:10.1109/48.895350.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. A. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the surface waves process program. J. Geophys. Res., 101, 35253543, doi:10.1029/95JC03282.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50, 371395, doi:10.1016/S0967-0637(03)00004-9.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2014: Near-surface turbulence. The Near-Surface Layer of the Ocean, A. Soloviev and R. Lukas, Eds., Springer, 153–224.

  • Stabeno, P. J., N. A. Bond, A. J. Hermann, N. B. Kachel, C. W. Mordy, and J. E. Overland, 2004: Meteorology and oceanography of the northern Gulf of Alaska. Cont. Shelf Res., 24, 859897, doi:10.1016/j.csr.2004.02.007.

    • Search Google Scholar
    • Export Citation
  • Steele, K. E., and T. Mettlach, 1993: NDBC wave data-current and planned. Proc. Second Int. Symp. on Ocean Wave Measurement and Analysis, New Orleans, LA, ASCE, 198–207.

  • Stevens, A. W., J. R. Lacy, D. P. Finlayson, and G. Gelfenbaum, 2008: Evaluation of a single-beam sonar system to map seagrass at two sites in northern Puget Sound, Washington. U.S. Geological Survey Scientific Investigations Rep. 2008-5009, 45 pp.

  • Stips, A., H. Burchard, K. Bolding, H. Prandke, A. Simon, and A. Wüest, 2005: Measurement and simulation of viscous dissipation in the wave affected surface layer. Deep-Sea Res. II, 52, 11331155, doi:10.1016/j.dsr2.2005.01.012.

    • Search Google Scholar
    • Export Citation
  • Strong, B., B. Brumley, E. A. Terray, and G. W. Stone, 2000: The performance of ADCP-derived directional wave spectra and comparison with other independent measurements. Proc. Oceans 2000 MTS/IEEE Conf. and Exhibition, Providence, RI, IEEE, 11951203, doi:10.1109/OCEANS.2000.881763.

  • Teague, W. J., H. W. Wijesekera, E. Jarosz, D. B. Fribance, A. Lugo-Fernández, and Z. R. Hallock, 2013: Current and hydrographic conditions at the East Flower Bank in 2011. Cont. Shelf Res., 63, 4358, doi:10.1016/j.csr.2013.04.039.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2010: On the structure of Langmuir turbulence. Ocean Modell., 31, 105119, doi:10.1016/j.ocemod.2009.10.007.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984: On the determination of Kv in the near-surface ocean from acoustic measurements of bubbles. J. Phys. Oceanogr., 14, 855863, doi:10.1175/1520-0485(1984)014<0855:OTDOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1986: Measurements with an automatically recording inverted echo sounder; ARIES and the bubble clouds. J. Phys. Oceanogr., 16, 14621478, doi:10.1175/1520-0485(1986)016<1462:MWAARI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1992: Bubble clouds and the dynamics of the upper ocean. Quart. J. Roy. Meteor. Soc., 118, 122, doi:10.1002/qj.49711850302.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and A. J. Hall, 1983: The characteristics of breaking waves, bubble clouds, and near-surface currents observed using side-scan sonar. Cont. Shelf Res., 1, 353384, doi:10.1016/0278-4343(83)90003-1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., W. A. M. Nimmo Smith, A. Graham, and A. M. Thurnherr, 1999: Patterns in foam and shallow tidal flows. The Wind-Driven Air–Sea Interface, M. Banner, Ed., School of Mathematics, University of New South Wales, 257–264.

  • Thorpe, S. A., T. R. Osborn, D. M. Farmer, and S. Vagle, 2003a: Bubble clouds and Langmuir circulation: Observations and models. J. Phys. Oceanogr., 33, 20132031, doi:10.1175/1520-0485(2003)033<2013:BCALCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., T. R. Osborn, J. E. F. Jackson, A. J. Hall, and R. G. Lueck, 2003b: Measurements of turbulence in the upper-ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122145, doi:10.1175/1520-0485(2003)033<0122:MOTITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1978: Stochastic form of the growth of wind waves in a single-parameter representation with physical implications. J. Phys. Oceanogr., 8, 494507, doi:10.1175/1520-0485(1978)008<0494:SFOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trevorrow, M. V., 2003: Measurements of near surface bubble plumes in the open ocean with implication for high frequency sonar performance. J. Acoust. Soc. Amer., 114, 26722684, doi:10.1121/1.1621008.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., and D. M. Farmer, 1992: The measurement of bubble-size distributions by acoustical backscatter. J. Atmos. Oceanic Technol., 9, 630644, doi:10.1175/1520-0426(1992)009<0630:TMOBSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., C. McNeil, and N. Steiner, 2010: Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen. J. Geophys. Res., 115, C12054, doi:10.1029/2009JC005990.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., J. Gemmrich, and H. Czerski, 2012: Reduced upper ocean turbulence and changes to bubble size distributions during large downward heat flux events. J. Geophys. Res., 117, C00H16, doi:10.1029/2011JC007308.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., J. S. Allen, and P. A. Newbergerl, 2003: Modeling study of turbulent mixing over the continental shelf: Comparison of turbulent closure schemes. J. Geophys. Res., 108, 3103, doi:10.1029/2001JC001234.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, W. J. Teague, E. Jarosz, W. E. Rogers, D. B. Fribance, and J. N. Moum, 2013: Surface wave effects on high-frequency currents over a shelf edge bank. J. Phys. Oceanogr., 43, 16271647, doi:10.1175/JPO-D-12-0197.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. G., and J. E. Overland, 1986: Meteorology of the northern Gulf of Alaska. The Gulf of Alaska: Physical Environment and Biological Resources, D. W. Hood and S. T. Zimmerman, Eds., DOC/NOAA, 31–54.

  • Zedel, L., and D. M. Farmer, 1991: Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean. J. Geophys. Res., 96, 88898900, doi:10.1029/91JC00189.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 507 174 12
PDF Downloads 351 77 5