Competing Effects of Elevated Vertical Mixing and Increased Freshwater Input on the Stratification and Sea Ice Cover in a Changing Arctic Ocean

Peter E. D. Davis Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Peter E. D. Davis in
Current site
Google Scholar
PubMed
Close
,
Camille Lique Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Camille Lique in
Current site
Google Scholar
PubMed
Close
,
Helen L. Johnson Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Helen L. Johnson in
Current site
Google Scholar
PubMed
Close
, and
John D. Guthrie Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by John D. Guthrie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Arctic Ocean is undergoing a period of rapid transition. Freshwater input is projected to increase, and the decline in Arctic sea ice is likely to drive periodic increases in vertical mixing during ice-free periods. Here, a 1D model of the Arctic Ocean is used to explore how these competing processes will affect the stratification, the stability of the cold halocline, and the sea ice cover at the surface. Initially, stronger shear leads to elevated vertical mixing that causes the mixed layer to warm. The change in temperature, however, is too small to affect the sea ice cover. Most importantly, in the Eurasian Basin, the elevated shear also deepens the halocline and strengthens the stratification over the Atlantic Water thermocline, reducing the vertical heat flux. After about a decade this effect dominates, and the mixed layer begins to cool. The sea ice cover can only be significantly affected if the elevated mixing is sufficient to erode the stratification barrier associated with the cold halocline. While freshwater generally dominates in the Canadian Basin (further isolating the mixed layer from the Atlantic Water layer), in the Eurasian Basin elevated shear reduces the strength of the stratification barrier, potentially allowing Atlantic Water heat to be directly entrained into the mixed layer during episodic mixing events. Therefore, although most sea ice retreat to date has occurred in the Canadian Basin, the results here suggest that, in future decades, elevated vertical mixing may play a more significant role in sea ice melt in the Eurasian Basin.

Denotes Open Access content.

Current affiliation: British Antarctic Survey, Cambridge, United Kingdom.

Current affiliation: Ifremer, Laboratoire de Physique des Océans, UMR6523, CNRS-IFREMER-IRD-UBO, Brest, France.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Peter E. D. Davis, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: petvis@bas.ac.uk

Abstract

The Arctic Ocean is undergoing a period of rapid transition. Freshwater input is projected to increase, and the decline in Arctic sea ice is likely to drive periodic increases in vertical mixing during ice-free periods. Here, a 1D model of the Arctic Ocean is used to explore how these competing processes will affect the stratification, the stability of the cold halocline, and the sea ice cover at the surface. Initially, stronger shear leads to elevated vertical mixing that causes the mixed layer to warm. The change in temperature, however, is too small to affect the sea ice cover. Most importantly, in the Eurasian Basin, the elevated shear also deepens the halocline and strengthens the stratification over the Atlantic Water thermocline, reducing the vertical heat flux. After about a decade this effect dominates, and the mixed layer begins to cool. The sea ice cover can only be significantly affected if the elevated mixing is sufficient to erode the stratification barrier associated with the cold halocline. While freshwater generally dominates in the Canadian Basin (further isolating the mixed layer from the Atlantic Water layer), in the Eurasian Basin elevated shear reduces the strength of the stratification barrier, potentially allowing Atlantic Water heat to be directly entrained into the mixed layer during episodic mixing events. Therefore, although most sea ice retreat to date has occurred in the Canadian Basin, the results here suggest that, in future decades, elevated vertical mixing may play a more significant role in sea ice melt in the Eurasian Basin.

Denotes Open Access content.

Current affiliation: British Antarctic Survey, Cambridge, United Kingdom.

Current affiliation: Ifremer, Laboratoire de Physique des Océans, UMR6523, CNRS-IFREMER-IRD-UBO, Brest, France.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Peter E. D. Davis, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: petvis@bas.ac.uk
Save
  • Aagaard, K., L. K. Coachman, and E. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28A, 529–545, doi:10.1016/0198-0149(81)90115-1.

    • Search Google Scholar
    • Export Citation
  • Ardyna, M., M. Babin, M. Gosselin, E. Devred, L. Rainville, and J. Tremblay, 2014: Recent Arctic Ocean sea-ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett., 41, 6207–6212, doi:10.1002/2014GL061047.

    • Search Google Scholar
    • Export Citation
  • Barthélemy, A., T. Fichefet, H. Goosse, and G. Madec, 2015: Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations. Ocean Modell., 86, 141–152, doi:10.1016/j.ocemod.2014.12.009.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479–482, doi:10.1038/nature13259.

    • Search Google Scholar
    • Export Citation
  • Bjork, G., 1989: A one-dimensional time-dependent model for the vertical stratification of the upper Arctic Ocean. J. Phys. Oceanogr., 19, 52–76, doi:10.1175/1520-0485(1989)019<0052:AODTDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourgain, P., and J. C. Gascard, 2011: The Arctic Ocean halocline and its interannual variability from 1997 to 2008. Deep-Sea Res. I, 58, 745–756, doi:10.1016/j.dsr.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., K. Bolding, and M. R. Villarreal, 1999: GOTM, a general ocean turbulence model: Theory, implementation and test cases. Tech. Rep. EUR 18745, European Commission, 103 pp.

  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96, 12 725–12 738, doi:10.1029/91JC01071.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39A, S459–S484, doi:10.1016/S0198-0149(06)80016-6.

    • Search Google Scholar
    • Export Citation
  • Davis, P. E. D., C. Lique, and H. L. Johnson, 2014: On the link between Arctic sea ice decline and the freshwater content of the Beaufort Gyre: Insights from a simple process model. J. Climate, 27, 8170–8184, doi:10.1175/JCLI-D-14-00090.1.

    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., L. Rainville, and J. M. Toole, 2014: Near-inertial internal wave field in the Canada basin from ice-tethered profilers. J. Phys. Oceanogr., 44, 413–426, doi:10.1175/JPO-D-13-0117.1.

    • Search Google Scholar
    • Export Citation
  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2, 148–152, doi:10.1080/16742834.2009.11446789.

    • Search Google Scholar
    • Export Citation
  • Fer, I., 2014: Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr., 44, 2031–2049, doi:10.1175/JPO-D-13-0133.1.

  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291–297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 3966–3977, doi:10.1002/jgrc.20294.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and Coauthors, 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 13–35, doi:10.1016/j.gloplacha.2014.11.013.

    • Search Google Scholar
    • Export Citation
  • Halle, C., and R. Pinkel, 2003: Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res., 108, 3210, doi:10.1029/2000JC000703.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., E. C. Carmack, F. A. McLaughlin, S. E. Allen, and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., S. E. Allen, F. A. McLaughlin, R. A. Woodgate, and E. C. Carmack, 2011: Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993–2009: A basin in transition. J. Geophys. Res., 116, C10008, doi:10.1029/2011JC007069.

    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., S. Nishino, and J. Inoue, 2015: Fixed-point observation of mixed layer evolution in the seasonally ice-free Chukchi Sea: Turbulent mixing due to gale winds and internal gravity waves. J. Phys. Oceanogr., 45, 836–853, doi:10.1175/JPO-D-14-0149.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. M. Smith, 1984: A one-and-a-half dimensional model for the Arctic halocline. Deep-Sea Res., 31A, 271–293, doi:10.1016/0198-0149(84)90105-5.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparisons with lower-latitude observations. J. Phys. Oceanogr., 15, 800–809, doi:10.1175/1520-0485(1985)015<0800:IWITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1987: Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res., 92, 779–782, doi:10.1029/JC092iC01p00779.

    • Search Google Scholar
    • Export Citation
  • Linders, J., and G. Björk, 2013: The melt-freeze cycle of the Arctic Ocean ice cover and its dependence on ocean stratification. J. Geophys. Res. Oceans, 118, 5963–5976, doi:10.1002/jgrc.20409.

    • Search Google Scholar
    • Export Citation
  • Lique, C., and M. Steele, 2012: Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin? J. Geophys. Res., 117, C03026, doi:10.1029/2011JC007612.

    • Search Google Scholar
    • Export Citation
  • Lique, C., J. D. Guthrie, M. Steele, A. Proshutinsky, J. H. Morison, and R. Krishfield, 2014: Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments. J. Geophys. Res. Oceans, 119, 496–508, doi:10.1002/2013JC009346.

    • Search Google Scholar
    • Export Citation
  • Lique, C., H. L. Johnson, and P. E. D. Davis, 2015: On the interplay between the circulation in the surface and the intermediate layers of the Arctic Ocean. J. Phys. Oceanogr., 45, 1393–1409, doi:10.1175/JPO-D-14-0183.1.

    • Search Google Scholar
    • Export Citation
  • Markus, T., J. C. Stroeve, and J. Miller, 2009: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024, doi:10.1029/2009JC005436.

    • Search Google Scholar
    • Export Citation
  • Martin, T., M. Steele, and J. Zhang, 2014: Seasonality and long-term trend of Arctic Ocean surface stress in a model. J. Geophys. Res., 119, 1723–1738, doi:10.1002/2013JC009425.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1990: Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res., 95, 11 641–11 654, doi:10.1029/JC095iC07p11641.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and R. A. Iannuzzi, 1998: Antarctic Ocean-ice interactions: Implications from ocean bulk property distributions in the Weddell Gyre. Antarctic Sea Ice: Physical Processes, Interactions and Variability, M. O. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 243–271.

  • Martinson, D. G., and M. Steele, 2001: Future of the Arctic sea ice cover: Implications of an Antarctic analog. Geophys. Res. Lett., 28, 307–310, doi:10.1029/2000GL011549.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 1550–1575, doi:10.1029/JC076i006p01550.

    • Search Google Scholar
    • Export Citation
  • Morison, J. H., C. E. Long, and M. D. Levine, 1985: Internal wave dissipation under sea ice. J. Geophys. Res., 90, 11 959–11 966, doi:10.1029/JC090iC06p11959.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707–730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nishino, S., Y. Kawaguchi, J. Inoue, T. Hirawake, A. Fujiwara, R. Futsuki, J. Onodera, and M. Aoyama, 2015: Nutrient supply and biological response to wind-induced mixing, inertial motion, internal waves, and currents in the northern Chukchi Sea. J. Geophys. Res. Oceans, 120, 1975–1992, doi:10.1002/2014JC010407.

    • Search Google Scholar
    • Export Citation
  • Nummelin, A., C. Li, and L. H. Smedsrud, 2015: Response of Arctic Ocean stratification to changing river runoff in a column model. J. Geophys. Res. Oceans, 120, 2655–2675, doi:10.1002/2014JC010571.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett., 40, 2097–2101, doi:10.1002/grl.50316.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. M. Adams, and N. A. Bond, 1997: Regional variation of winter temperatures in the Arctic. J. Climate, 10, 821–837, doi:10.1175/1520-0442(1997)010<0821:RVOWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peralta-Ferriz, C., and R. A. Woodgate, 2015: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr., 134, 19–53, doi:10.1016/j.pocean.2014.12.005.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, doi:10.1029/2007GL031480.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173, doi:10.1126/science.1077445.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr., 35, 645–665, doi:10.1175/JPO2715.1.

  • Pinker, R. T., X. Niu, and Y. Ma, 2014: Solar heating of the Arctic Ocean in the context of ice-albedo feedback. J. Geophys. Res., 119, 8395–8409, doi:10.1002/2014JC010232.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., 1992: Internal wave observations from the Arctic environmental drifting buoy. J. Geophys. Res., 97, 12 619–12 638, doi:10.1029/92JC01098.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., J. E. Walsh, and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Amer. Meteor. Soc., 93, 145–151, doi:10.1175/BAMS-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, doi:10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Rabe, B., and Coauthors, 2011: An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006–2008 period. Deep-Sea Res. I, 58, 173–185, doi:10.1016/j.dsr.2010.12.002.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., C. M. Lee, and R. A. Woodgate, 2011: Impact of wind-driven mixing in the Arctic Ocean. Oceanography, 24, 136–145, doi:10.5670/oceanog.2011.65.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., B. J. Lincoln, Y.-D. Lenn, J. A. M. Green, A. Sundfjord, and S. Bacon, 2015: Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat. Geosci., 8, 191–194, doi:10.1038/ngeo2350.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., L. G. Anderson, and E. P. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 8807–8821, doi:10.1029/96JC00143.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 1658–1672, doi:10.1002/jgrc.20122.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., and T. P. Stanton, 2014: Vertical diffusivity of the western Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 5017–5038, doi:10.1002/2013JC009598.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., and D. Bowers, 1981: Models of stratification and frontal movement in shelf seas. Deep-Sea Res., 28A, 727–738, doi:10.1016/0198-0149(81)90132-1.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2012: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing. J. Geophys. Res., 117, C07010, doi:10.1029/2012JC007910.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103, 10 419–10 435, doi:10.1029/98JC00580.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, doi:10.1029/2003JC002009.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2011: Modeling the formation and fate of the near-surface temperature maximum in the Canadian Basin of the Arctic Ocean. J. Geophys. Res., 116, C11015, doi:10.1029/2010JC006803.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 6399–6406, doi:10.1002/2015GL064541.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of Pacific Summer Water variability in the Arctic’s central Canada Basin. J. Geophys. Res. Oceans, 119, 7523–7548, doi:10.1002/2014JC010273.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • Tsamados, M., D. L. Feltham, D. Schroeder, D. Flocco, S. L. Farrell, N. Kurtz, S. W. Laxon, and S. Bacon, 2014: Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr., 44, 1329–1353, doi:10.1175/JPO-D-13-0215.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 2010: The melting of ice in the Arctic Ocean: The influence of double-diffusive transport of heat from below. J. Phys. Oceanogr., 40, 249–256, doi:10.1175/2009JPO4279.1.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M. Maqueda, 2009a: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 33–53, doi:10.1016/j.ocemod.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, and H. Goosse, 2009b: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations. Ocean Modell., 27, 54–69, doi:10.1016/j.ocemod.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey, 2012: Twenty-first-century Arctic climate change in CCSM4. J. Climate, 25, 2696–2710, doi:10.1175/JCLI-D-11-00220.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2015: Projected future duration of the sea-ice-free season in the Alaskan Arctic. Prog. Oceanogr., 136, 50–59, doi:10.1016/j.pocean.2015.01.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 936 265 13
PDF Downloads 611 121 8