Southern Ocean Overturning Compensation in an Eddy-Resolving Climate Simulation

Stuart P. Bishop North Carolina State University, Raleigh, North Carolina

Search for other papers by Stuart P. Bishop in
Current site
Google Scholar
PubMed
Close
,
Peter R. Gent National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Peter R. Gent in
Current site
Google Scholar
PubMed
Close
,
Frank O. Bryan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Frank O. Bryan in
Current site
Google Scholar
PubMed
Close
,
Andrew F. Thompson California Institute of Technology, Pasadena, California

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
,
Matthew C. Long National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Matthew C. Long in
Current site
Google Scholar
PubMed
Close
, and
Ryan Abernathey Columbia University, New York, New York

Search for other papers by Ryan Abernathey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1)] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stuart P. Bishop, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: spbishop@ncsu.edu

Abstract

The Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1)] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stuart P. Bishop, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: spbishop@ncsu.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., and C. Wortham, 2015: Phase speed cross spectra of eddy heat fluxes in the pacific. J. Phys. Oceanogr., 45, 12851301, doi:10.1175/JPO-D-14-0160.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Abram, N. J., R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner, and M. H. England, 2014: Evolution of the Southern Annular Mode during the past millennium. Nat. Climate Change, 4, 564569, doi:10.1038/nclimate2235.

    • Search Google Scholar
    • Export Citation
  • Ballarotta, M., S. Drijfhout, T. Kuhlbrodt, and K. Döös, 2013: The residual circulation of the Southern Ocean: Which spatio-temporal scales are needed? Ocean Modell., 64, 4655, doi:10.1016/j.ocemod.2013.01.005.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., and F. O. Bryan, 2013: A comparison of mesoscale eddy heat fluxes from observations and a high-resolution ocean model simulation of the Kuroshio Extension. J. Phys. Oceanogr., 43, 25632570, doi:10.1175/JPO-D-13-0150.1.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models. J. Climate, 27, 411425, doi:10.1175/JCLI-D-12-00759.1.

    • Search Google Scholar
    • Export Citation
  • Chidichimo, M. P., K. A. Donohue, D. R. Watts, and K. L. Tracey, 2014: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage. J. Phys. Oceanogr., 44, 18291853, doi:10.1175/JPO-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. R. Watts, 1996: Eddy-mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, doi:10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085, doi:10.1016/0198-0149(81)90048-0.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, doi:10.1175/JCLI-D-12-00504.1.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. Gnanadesikan, S. Griffies, and J. Sarmiento, 2011: Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr., 41, 17561771, doi:10.1175/2011JPO4586.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C., J. L. Sommer, J. Zika, M. Gehlen, J. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the Southern Annular Mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation sensitivity during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, doi:10.1016/j.ocemod.2015.07.009.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, doi:10.1175/JCLI-D-14-00313.1.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., T. K. Chereskin, and M. R. Mazloff, 2011: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res., 116, C08015, doi:10.1029/2011JC006999.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci., 8, 7994, doi:10.1146/annurev-marine-122414-033929.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulating models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, doi:10.1175/JCLI-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 4249–4255, doi:10.1002/2015GL064100.

  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddies. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsena, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res., 120, 257267, doi:10.1002/2014JC010470.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004JC002753.

  • Hunke, E., and W. Lipscomb, 2008: CICE: The Los Alamos sea ice model: Documentation and software user’s manual, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 116 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, doi:10.1007/s00382-012-1500-3.

    • Search Google Scholar
    • Export Citation
  • Langlais, C. E., S. R. Rintoul, and J. D. Zika, 2015: Sensitivity of Antarctic Circumpolar Current transport and eddy activity to wind patterns in the Southern Ocean. J. Phys. Oceanogr., 45, 10511067, doi:10.1175/JPO-D-14-0053.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and A. J. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Academic Press, 317–336.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and Coauthors., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

  • Lee, M., and A. Coward, 2003: Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model. Ocean Modell., 5, 249266, doi:10.1016/S1463-5003(02)00044-6.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., T. K. Chereskin, J. Sprintall, and J. L. McClean, 2011: Near-surface eddy heat and momentum fluxes in the Antarctic Circumpolar Current in Drake Passage. J. Phys. Oceanogr., 41, 13851407, doi:10.1175/JPO-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30, 10131045, doi:10.1175/1520-0485(2000)030<1013:WMTITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487, doi:10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • McClean, J., and Coauthors, 2011: A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modell., 39, 10–30, doi:10.1016/j.ocemod.2011.02.011.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, doi:10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., T. L. Frölicher, and J. L. Sarmiento, 2015: Upwelling in the Southern Ocean. Phys. Today, 68, 2732, doi:10.1063/PT.3.2654.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Newsom, E., C. Bitz, F. Bryan, R. P. Abernathey, and P. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 2597–2619, doi:10.1175/JCLI-D-15-0513.1.

  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/ngeo1523.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014: A new high-resolution global climate simulation using Community Atmosphere Model version 5. J. Adv. Model. Earth Syst., 6, 10651094, doi:10.1002/2014MS000363.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, doi:10.1357/002224007783649484.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. Polvani, K. Smith, and R. Abernathey, 2015: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1 (WACCM). Geophys. Res. Lett., 42, 55475555, doi:10.1002/2015GL064744.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., R. Ferrari, and A. F. Thompson, 2014: On the importance of surface forcing in conceptual models of the deep ocean. J. Phys. Oceanogr., 44, 891899, doi:10.1175/JPO-D-13-0206.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, doi:10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. N. Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741–749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting Westerlies. Science, 323, 14341435, doi:10.1126/science.1169823.

  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a beta-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, doi:10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., J. L. Sommer, J. Molines, and B. D. Cuevas, 2010: Response of the Southern Ocean to the Southern Annular Mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668, doi:10.1175/2010JPO4364.1.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, doi:10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2012: Standing eddies in the meridional overturning circulation. J. Phys. Oceanogr., 42, 14861508, doi:10.1175/JPO-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., L.-L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801, doi:10.1007/s10236-010-0288-0.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, doi:10.1016/j.ocemod.2011.08.004.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier-Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264, doi:10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., J. L. Sommer, C. O. Dufour, A. C. N. Garabato, and A. Blaker, 2013a: Acceleration of the Antarctic Circumpolar Current by wind stress along the coast of Antarctica. J. Phys. Oceanogr., 43, 27722784, doi:10.1175/JPO-D-13-091.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., and Coauthors, 2013b: Vertical eddy fluxes in the Southern Ocean. J. Phys. Oceanogr., 43, 941955, doi:10.1175/JPO-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 730 266 31
PDF Downloads 581 181 18