The Instabilities and Multiscale Energetics Underlying the Mean–Interannual–Eddy Interactions in the Kuroshio Extension Region

Yang Yang School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
and
X. San Liang School of Marine Sciences, and School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by X. San Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a recently developed energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), this study investigates the intricate nonlinear mutual interactions among the decadally modulating mean flow, the interannual fluctuations, and the transient eddies in the Kuroshio Extension region. It is found that the mean kinetic energy maximizes immediately east of the Izu–Ogasawara Ridge, while the transient eddy kinetic energy does not peak until 400 km away downstream. The interannual variabilities, which are dominated by a jet-trapped Rossby wave mode, provide an energy reservoir comparable to the other counterparts. In the upstream, strong localized barotropic and baroclinic transfers from the mean flow to the eddies are observed, whereas those from the interannual variabilities are not significant. Besides fueling the eddies, the unstable mean jet also releases energy to the interannual-scale processes. Between 144° and 154°E, both transfers from the mean flow and the interannual variabilities are important for the eddy development. Farther downstream, eddies are found to drive the mean flow on both the kinetic energy (KE) and available potential energy (APE) maps. They also provide KE to the interannual variabilities but obtain APE from the latter. The gained eddy APE is then converted to eddy KE through buoyancy conversion. Upscale energy transfers are observed in the northern and southern recirculation gyre (RG) regions. In these regions, the interannual–eddy interaction exhibits different scenarios: the eddies lose KE to the interannual processes in the northern RG region, while gaining KE in the southern RG region.

Corresponding author address: X. San Liang, Nanjing Institute of Meteorology, 219 Ningliu Blvd., Nanjing 210044, China. E-mail: sanliang@courant.nyu.edu

Abstract

Using a recently developed energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), this study investigates the intricate nonlinear mutual interactions among the decadally modulating mean flow, the interannual fluctuations, and the transient eddies in the Kuroshio Extension region. It is found that the mean kinetic energy maximizes immediately east of the Izu–Ogasawara Ridge, while the transient eddy kinetic energy does not peak until 400 km away downstream. The interannual variabilities, which are dominated by a jet-trapped Rossby wave mode, provide an energy reservoir comparable to the other counterparts. In the upstream, strong localized barotropic and baroclinic transfers from the mean flow to the eddies are observed, whereas those from the interannual variabilities are not significant. Besides fueling the eddies, the unstable mean jet also releases energy to the interannual-scale processes. Between 144° and 154°E, both transfers from the mean flow and the interannual variabilities are important for the eddy development. Farther downstream, eddies are found to drive the mean flow on both the kinetic energy (KE) and available potential energy (APE) maps. They also provide KE to the interannual variabilities but obtain APE from the latter. The gained eddy APE is then converted to eddy KE through buoyancy conversion. Upscale energy transfers are observed in the northern and southern recirculation gyre (RG) regions. In these regions, the interannual–eddy interaction exhibits different scenarios: the eddies lose KE to the interannual processes in the northern RG region, while gaining KE in the southern RG region.

Corresponding author address: X. San Liang, Nanjing Institute of Meteorology, 219 Ningliu Blvd., Nanjing 210044, China. E-mail: sanliang@courant.nyu.edu
Save
  • Adamec, D., 1998: Modulation of the seasonal signal of the Kuroshio Extension during 1994 from satellite data. J. Geophys. Res., 103, 10 20910 222, doi:10.1029/98JC00456.

    • Search Google Scholar
    • Export Citation
  • Aoki, K., S. Minobe, Y. Tanimoto, and Y. Sasai, 2013: Southward eddy heat transport occurring along southern flanks of the Kuroshio Extension and the Gulf Stream in a 1/10° global ocean general circulation model. J. Phys. Oceanogr., 43, 18991910, doi:10.1175/JPO-D-12-0223.1.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, doi:10.1175/JPO-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Bernstein, R. L., and W. B. White, 1981: Stationary and traveling mesoscale perturbations in the Kuroshio Extension current. J. Phys. Oceanogr., 11, 692704, doi:10.1175/1520-0485(1981)011<0692:SATMPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part II: Spatiotemporal variability. J. Phys. Oceanogr., 43, 24162431, doi:10.1175/JPO-D-13-061.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. H., and P. P. Niiler, 1977: Energetics of the Florida Current. J. Mar. Res., 35, 163191.

  • Chapman, C. C., A. M. Hogg, A. E. Kiss, and S. R. Rintoul, 2015: The dynamics of Southern Ocean storm tracks. J. Phys. Oceanogr., 45, 884903, doi:10.1175/JPO-D-14-0075.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, doi:10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Delman, A. S., J. L. McClean, J. Sprintall, L. D. Talley, E. Yulaeva, and S. R. Jayne, 2015: Effects of eddy vorticity forcing on the mean state of the Kuroshio Extension. J. Phys. Oceanogr., 45, 13561375, doi:10.1175/JPO-D-13-0259.1.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2000: Mesoscale eddies observed by TOLEX-ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J. Oceanogr., 56, 4357, doi:10.1023/A:1011110507628.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2001: Trajectory of mesoscale eddies in the Kuroshio recirculation region. J. Oceanogr., 57, 471480, doi:10.1023/A:1021293822277.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics.Academic Press, 662 pp.

  • Greatbatch, R. J., X. Zhai, J.-D. Kohlmann, and L. Czeschel, 2010: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio Extensions as revealed by satellite data. Ocean Dyn., 60, 617628, doi:10.1007/s10236-010-0282-6.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1991: Energetics of the Kuroshio Extension at 35°N, 152°E. J. Phys. Oceanogr., 21, 958975, doi:10.1175/1520-0485(1991)021<0958:EOTKEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz, P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio Current System using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101, 941976, doi:10.1029/95JC01674.

    • Search Google Scholar
    • Export Citation
  • Itoh, S., and I. Yasuda, 2010: Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr., 40, 10181034, doi:10.1175/2009JPO4265.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep Sea Res., 56, 20882099, doi:10.1016/j.dsr.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1987: Hydrographic sections across the Kuroshio Extension at 165°E and 175°W. Deep Sea Res., 34, 13311352, doi:10.1016/0198-0149(87)90130-0.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, doi:10.1175/JPO-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., L. Thompson, W. Cheng, and E. J. Metzger, 2007: Evaluation of HYCOM in the Kuroshio Extension region using new metrics. J. Geophys. Res., 112, C01004, doi:10.1029/2006JE002678.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2004: A study of the Iceland–Faeroe frontal variability using the multiscale energy and vorticity analysis. J. Phys. Oceanogr., 34, 25712591, doi:10.1175/JPO2661.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230, doi:10.1016/j.dynatmoce.2004.12.004.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467, doi:10.1137/06066895X.

  • Liang, X. S., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, doi:10.1016/j.dynatmoce.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2009: Multiscale processes and nonlinear dynamics of the circulation and upwelling events off Monterey Bay. J. Phys. Oceanogr., 39, 290313, doi:10.1175/2008JPO3950.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., K. R. Thompson, and J. Hu, 2014: A frequency-dependent description of propagating sea level signals in the Kuroshio Extension region. J. Phys. Oceanogr., 44, 16141635, doi:10.1175/JPO-D-13-0185.1.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the World Ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • McCalpin, J. D., and D. B. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26, 739752, doi:10.1175/1520-0485(1996)026<0739:POTLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current System. J. Phys. Oceanogr., 13, 18471867, doi:10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res., 108, 3078, doi:10.1029/1999JC000085.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19, 19701989, doi:10.1175/JCLI3793.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2008: Interannual-to-decadal variability in the Oyashio and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J. Climate, 21, 62836303, doi:10.1175/2008JCLI2294.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Sasaki, B. Taguchi, and H. Nakamura, 2012: Potential predictability of interannual variability in the Kuroshio Extension jet speed in an eddy-resolving OGCM. J. Climate, 25, 36453652, doi:10.1175/JCLI-D-11-00641.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, doi:10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM3 manual. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 4, 680 pp.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Penduff, T., M. Juza, B. Barnier, J. Zika, W. K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, doi:10.1175/JCLI-D-11-00077.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1995: Variability and energetics of the Kuroshio Extension and its recirculation gyre from the first two-year TOPEX data. J. Phys. Oceanogr., 25, 18271842, doi:10.1175/1520-0485(1995)025<1827:VAEOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 14861502, doi:10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, doi:10.1016/j.dsr2.2008.11.036.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., K. A. Kelly, and T. M. Joyce, 1991: Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96, 18 49118 507, doi:10.1029/91JC01834.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Hacker, N. G. Hogg, S. R. Jayne, and H. Sasaki, 2008: The Kuroshio Extension northern recirculation gyre: Profiling float measurements and forcing mechanism. J. Phys. Oceanogr., 38, 17641779, doi:10.1175/2008JPO3921.1.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., X. Capet, and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett., 41, 16511656, doi:10.1002/2013GL059004.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185, doi:10.1007/978-0-387-49791-4_10.

  • Sasaki, Y. N., and N. Schneider, 2011: Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr., 41, 979993.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, and N. Schneider, 2013: Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. J. Phys. Oceanogr., 43, 442456, doi:10.1175/JPO-D-12-096.1.

    • Search Google Scholar
    • Export Citation
  • Scharffenberg, M. G., and D. Stammer, 2010: Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data. J. Geophys. Res., 115, C02008, doi:10.1029/2008JC005242.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr., 26, 21692182, doi:10.1175/1520-0485(1996)026<2169:DOTGSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2000: Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58, 97116, doi:10.1357/002224000321511214.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377, doi:10.1175/JCLI4142.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., B. Qiu, M. Nonaka, H. Sasaki, S.-P. Xie, and N. Schneider, 2010: Decadal variability of the Kuroshio Extension: Mesoscale eddies and recirculations. Ocean Dyn., 60, 673691, doi:10.1007/s10236-010-0295-1.

    • Search Google Scholar
    • Export Citation
  • Tai, C.-K., and P. P. Niiler, 1985: Modeling large-scale instabilities in the Kuroshio Extension. Dyn. Atmos. Oceans, 9, 359382, doi:10.1016/0377-0265(85)90009-0.

    • Search Google Scholar
    • Export Citation
  • Tai, C.-K., and W. B. White, 1990: Eddy variability in the Kuroshio Extension as revealed by Geosat altimetry: Energy propagation away from the jet, Reynolds stress, and seasonal cycle. J. Phys. Oceanogr., 20, 17611777, doi:10.1175/1520-0485(1990)020<1761:EVITKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., D. R. Watts, K. A. Donohue, and H. Ichikawa, 2012: Propagation of Kuroshio Extension meanders between 143° and 149°E. J. Phys. Oceanogr., 42, 581601, doi:10.1175/JPO-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., N. G. Hogg, and S. R. Jayne, 2011: Eddy–mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, doi:10.1175/2010JPO4564.1.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., L. Magaard, and J. Hager, 1976: Eddy energy in the oceans. J. Geophys. Res., 81, 26412646, doi:10.1029/JC081i015p02641.

  • Xie, L., X. Liu, and L. J. Pietrafesa, 2007: Effect of bathymetric curvature on Gulf Stream instability in the vicinity of the Charleston Bump. J. Phys. Oceanogr., 37, 452475, doi:10.1175/JPO2995.1.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., Y. Shibao, and S. Umatanit, 1985: Interannual variability of the Kuroshio Extension and its relation to the Southern Oscillation/El Niño. J. Oceanogr. Soc. Japan, 41, 274281, doi:10.1007/BF02109276.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic Subtropical and Subpolar Gyres. J. Phys. Oceanogr., 43, 95103, doi:10.1175/JPO-D-12-021.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 703 308 29
PDF Downloads 373 119 19