• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and Z. Zhao, 2007a: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, doi:10.1175/JPO3085.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and Z. Zhao, 2007b: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858, doi:10.1175/JPO3086.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , J. A. MacKinnon, , Z. Zhao, , R. Pinkel, , J. Klymak, , and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., , E. Kunze, , and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, doi:10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., , S. T. Garner, , R. W. Hallberg, , and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, doi:10.1016/j.dsr2.2004.09.014.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., , A. J. Wallcraft, , and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, doi:10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., , J. Richman, , J. Shriver, , P. Timko, , E. Metzger, , and A. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 2029, doi:10.5670/oceanog.2012.38.

    • Search Google Scholar
    • Export Citation
  • AVISO, 2012: DT CorSSH and DT SLA Product Handbook. AVISO altimetry, 17 pp. [Available online at http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_dt_corssh_dt_sla.pdf.]

  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29A, 307338, doi:10.1016/0198-0149(82)90098-X.

  • Bühler, O., , and M. Holmes-Cerfon, 2011: Decay of an internal tide due to random topography in the ocean. J. Fluid Mech., 678, 271293, doi:10.1017/jfm.2011.115.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., , L. F. Praston, , and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, doi:10.1126/science.1069803.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and et al. , 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Search Google Scholar
    • Export Citation
  • Chandran, S., Ed., 2013: Adaptive Antenna Arrays: Trends and Applications. Springer, 660 pp.

  • Chiswell, S. M., 2006: Altimeter and current meter observations of internal tides: Do they agree? J. Phys. Oceanogr., 36, 18601872, doi:10.1175/JPO2944.1.

    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., , and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967996, doi:10.1175/JPO2876.1.

  • Cummins, P. F., , and L.-Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27, 762781, doi:10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2002: Mapping low-mode internal tides near Hawaii using TOPEX/Poseidon altimeter data. Geophys. Res. Lett., 29, 1250, doi:10.1029/2001GL013944.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2006: Mode-1 internal tides in the western North Atlantic Ocean. Deep-Sea Res. I, 53, 449473, doi:10.1016/j.dsr.2005.12.009.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry: Computing accurate tidal predictions at arbitrary points over the world oceans. Tech. Rep., Applied Physics Laboratory, University of Washington, 114 pp. [Available online at http://staff.washington.edu/dushaw/epubs/Dushaw_Global_IT_Predict_APL-TM1-15_v1.1.pdf.]

  • Dushaw, B. D., , B. M. Howe, , B. D. Cornuelle, , P. F. Worcester, , and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631647, doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., , P. F. Worcester, , and M. A. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677698, doi:10.1016/j.dsr.2011.04.002.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, doi:10.1029/2000JC000699.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , R. D. Ray, , and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., , and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, doi:10.1175/JTECH-D-13-00109.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Hallberg, R., 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135, 5465, doi:10.1006/jcph.1997.5734.

    • Search Google Scholar
    • Export Citation
  • Hendry, R. M., 1977: Observations of the semidiurnal internal tide in the western North Atlantic Ocean. Philos. Trans. Roy. Soc. London, 286A, 124, doi:10.1098/rsta.1977.0108.

    • Search Google Scholar
    • Export Citation
  • Jan, S., , and C.-T. A. Chen, 2009: Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. J. Geophys. Res., 114, C04021, doi:10.1029/2008JC004887.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and L. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1998: Tides—A modern perspective. Mar. Geod., 21, 275297, doi:10.1080/01490419809388143.

  • Kantha, L. H., , and C. C. Tierney, 1997: Global baroclinic tides. Prog. Oceanogr., 40, 163178, doi:10.1016/S0079-6611(97)00028-1.

  • Kelly, S. M., , J. D. Nash, , K. I. Martini, , M. H. Alford, , and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, doi:10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., , N. L. Jones, , and J. D. Nash, 2013a: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, doi:10.1175/JPO-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., , N. L. Jones, , J. D. Nash, , and A. F. Waterhouse, 2013b: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, doi:10.1002/grl.50872.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., , N. L. Jones, , G. N. Ivey, , and R. J. Lowe, 2015: Internal-tide spectroscopy and prediction in the Timor Sea. J. Phys. Oceanogr., 45, 6483, doi:10.1175/JPO-D-14-0007.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , and S. G. Llewellyn Smith, 2004: The role of small-scale topography in turbulent mixing of the global ocean. Oceanography, 17, 5564, doi:10.5670/oceanog.2004.67.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , L. K. Rosenfeld, , G. S. Carter, , and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32, 18901913, doi:10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., , J. S. Allen, , and G. D. Egbert, 2010: Combined effects of wind-driven upwelling and internal tide on the continental shelf. J. Phys. Oceanogr., 40, 737756, doi:10.1175/2009JPO4183.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., , T. B. Sanford, , E. Kunze, , J. D. Nash, , M. A. Merrifield, , and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183, doi:10.1175/JPO2886.1.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., , and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 45754591, doi:10.1029/2000JC000351.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and et al. , 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp. [Available online at http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.]

  • MacKinnon, J. A., , and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., , M. H. Alford, , R. Pinkel, , J. Klymak, , and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Maraldi, C., , F. Lyard, , L. Testut, , and R. Coleman, 2011: Energetics of internal tides around the Kerguelen Plateau from modeling and altimetry. J. Geophys. Res., 116, C06004, doi:10.1029/2010JC006515.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., , M. H. Alford, , J. D. Nash, , E. Kunze, , and M. A. Merrifield, 2007: Diagnosing a partly-standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, doi:10.1029/2007GL029749.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., , M. H. Alford, , E. Kunze, , S. M. Kelly, , and J. D. Nash, 2013: Internal bores and breaking internal tides on the Oregon continental slope. J. Phys. Oceanogr., 43, 120139, doi:10.1175/JPO-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., , G. S. Carter, , and T. Peacock, 2014: Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. Oceans, 119, 21652182, doi:10.1002/2013JC009152.

    • Search Google Scholar
    • Export Citation
  • Melet, A., , R. Hallberg, , S. Legg, , and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., , and S. M. Chiswell, 2000: Coherence of internal tide modulations along the Hawaiian Ridge. J. Geophys. Res., 105, 28 65328 661, doi:10.1029/2000JC900140.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42, 135148, doi:10.1016/0967-0637(95)92886-C.

  • Müller, M., , J. Y. Cherniawsky, , M. G. G. Foreman, , and J.-S. von Storch, 2012: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607, doi:10.1029/2012GL053320.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Munk, W. H., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., , B. Zetler, , and G. W. Groves, 1965: Tidal cusps. Geophys. J., 10, 211219, doi:10.1111/j.1365-246X.1965.tb03062.x.

  • Nash, J. D., , E. Kunze, , C. M. Lee, , and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 11231135, doi:10.1175/JPO2883.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., , M. H. Alford, , E. Kunze, , K. Martini, , and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental shelf. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., , S. M. Kelly, , E. L. Shroyer, , J. N. Moum, , and T. F. Duda, 2012: The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr., 42, 19812000, doi:10.1175/JPO-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • New, A. L., , and J. C. B. Da Silva, 2002: Remote sensing evidence for the local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res. I, 49, 915934, doi:10.1016/S0967-0637(01)00082-6.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493502, doi:10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2014: Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modell., 80, 5973, doi:10.1016/j.ocemod.2014.05.003.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 264 pp.

  • Pétrélis, F., , S. Llewellyn Smith, , and W. R. Young, 2006: Tidal conversion at a submarine ridge. J. Phys. Oceanogr., 36, 10531071, doi:10.1175/JPO2879.1.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., , G. T. Mardell, , and A. L. New, 1986: Propagation of internal tides from the upper slopes of the Bay of Biscay. Nature, 321, 154158, doi:10.1038/321154a0.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and et al. , 2015: Breaking internal tides keep the ocean in balance. Eos, Trans. Amer. Geophys. Union, 96, doi:10.1029/2015EO039555.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, doi:10.1175/JPO2889.1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , T. M. S. Johnston, , G. S. Carter, , M. A. Merrifield, , R. Pinkel, , P. F. Worcester, , and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325, doi:10.1175/2009JPO4256.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2013: Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans, 118, 45704584, doi:10.1002/jgrc.20336.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, doi:10.1029/96GL02050.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262, doi:10.1029/2000GL012447.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, doi:10.1029/2011GL048617.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., , and E. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, doi:10.1175/JPO-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Rost, S., , and C. Thomas, 2002: Array seismology: Methods and applications. Rev. Geophys., 40, 1008, doi:10.1029/2000RG000100.

  • Rudnick, D. L., and et al. , 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 712726, doi:10.1175/1520-0485(1998)028<0712:LSCWLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sharples, J., and et al. , 2007: Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnol. Oceanogr., 52, 17351747, doi:10.4319/lo.2007.52.5.1735.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., , B. K. Arbic, , J. G. Richman, , R. D. Ray, , E. J. Metzger, , A. J. Wallcraft, , and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., , J. G. Richman, , and B. K. Arbic, 2014: How stationary are the internal tides in a high-resolution global ocean circulation model? J. Geophys. Res. Oceans, 119, 27692787, doi:10.1002/2013JC009423.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138, doi:10.1016/j.ocemod.2008.01.002.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, doi:10.5670/oceanog.2012.39.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Terker, S. R., , J. B. Girton, , E. Kunze, , J. M. Klymak, , and R. Pinkel, 2014: Observations of the internal tide on the California continental margin near Monterey Bay. Cont. Shelf Res., 82, 6071, doi:10.1016/j.csr.2014.01.017.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2004: Bandwidth similarity at inertial and tidal frequencies in kinetic energy spectra from the Bay of Biscay. Deep-Sea Res. I, 51, 637652, doi:10.1016/j.dsr.2004.01.006.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., , and N. Suginohara, 2001: Vertical mixing in the ocean. Nature, 409, 37, doi:10.1038/35051171.

  • Worcester, P. F., and et al. , 2013: The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Amer., 134, 3359, doi:10.1121/1.4818887.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167182, doi:10.1029/RG013i001p00167.

  • Wunsch, C., 2013: Baroclinic motions and energetics as measured by altimeters. J. Atmos. Oceanic Technol., 30, 140150, doi:10.1175/JTECH-D-12-00035.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., , and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, doi:10.1175/JPO-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., , and G. D. Egbert, 2006: Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36, 10191035, doi:10.1175/JPO2878.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., , and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, doi:10.1175/JPO-D-12-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, doi:10.1002/2014JC010014.

  • Zhao, Z., , and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684, doi:10.1175/2009JPO3922.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , and E. A. D’Asaro, 2011: A perfect focus of the internal tide from the Mariana Arc. Geophys. Res. Lett., 38, L14609, doi:10.1029/2011GL047909.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , M. H. Alford, , J. A. MacKinnon, , and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tides from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, doi:10.1175/2009JPO4207.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , M. H. Alford, , J. Girton, , T. M. S. Johnston, , and G. Carter, 2011: Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res., 116, C12039, doi:10.1029/2011JC007045.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , M. H. Alford, , and J. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25, 4251, doi:10.5670/oceanog.2012.40.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., , M. A. Merrifield, , G. S. Carter, , D. S. Luther, , M. D. Levine, , and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036, doi:10.1175/JPO-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M., and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp. [Available online at http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 612 612 62
PDF Downloads 364 364 34

Global Observations of Open-Ocean Mode-1 M2 Internal Tides

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 2 Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
  • | 3 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 4 University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A global map of open-ocean mode-1 M2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992–2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M2 internal tides are presented. The M2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and seamounts. Internal tidal beams of 100–300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M2 internal tide’s numerous generation sites and long-range propagation. The M2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.8°S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 1015 J) for all the coherent mode-1 M2 internal tides. Finally, satellite observed M2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0105.s1.

Corresponding author address: Zhongxiang Zhao, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: zzhao@apl.washington.edu

Abstract

A global map of open-ocean mode-1 M2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992–2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M2 internal tides are presented. The M2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and seamounts. Internal tidal beams of 100–300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M2 internal tide’s numerous generation sites and long-range propagation. The M2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.8°S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 1015 J) for all the coherent mode-1 M2 internal tides. Finally, satellite observed M2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-15-0105.s1.

Corresponding author address: Zhongxiang Zhao, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: zzhao@apl.washington.edu

Supplementary Materials

    • Supplemental Materials (JPG 3.50 MB)
Save