• Alford, M., 2001: Fine-structure contamination: Observations and a model of a simple two-wave case. J. Phys. Oceanogr., 31, 26452649, doi:10.1175/1520-0485(2001)031<2645:FSCOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D., , and M. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, doi:10.1017/S0022112078002773.

    • Search Google Scholar
    • Export Citation
  • Bluteau, C., , N. Jones, , and G. Ivey, 2011: Dynamics of a tidally-forced stratified shear flow on the continental slope. J. Geophys. Res., 116, C11017, doi:10.1029/2011JC007214.

    • Search Google Scholar
    • Export Citation
  • Boegman, L., 2009: Currents in stratified water bodies. 2: Internal waves. Encyclopedia of Inland Waters, L. Boegman, Ed., Academic Press, 539–558.

  • Boegman, L., , G. Ivey, , and J. Imberger, 2005a: The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr., 50, 16201637, doi:10.4319/lo.2005.50.5.1620.

    • Search Google Scholar
    • Export Citation
  • Boegman, L., , G. Ivey, , and J. Imberger, 2005b: The energetics of large-scale internal wave degeneration in lakes. J. Fluid Mech., 531, 159180, doi:10.1017/S0022112005003915.

    • Search Google Scholar
    • Export Citation
  • Bordes, G., , A. Venaille, , S. Joubaud, , P. Odier, , and D. Thierry, 2012: Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids, 24, 086602, doi:10.1063/1.4745880.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , J. Candela, , and T. H. Kinder, 1994: Exchange through the Strait of Gibraltar. Prog. Oceanogr., 33, 201248, doi:10.1016/0079-6611(94)90028-0.

    • Search Google Scholar
    • Export Citation
  • Butman, B., 1988: Downslope Eulerian mean flow associated with high-frequency current fluctuations observed on the outer continental shelf and upper slope along the northeastern United States continental margin: Implications for sediment transport. Cont. Shelf Res., 8, 811840, doi:10.1016/0278-4343(88)90078-7.

    • Search Google Scholar
    • Export Citation
  • Cossu, R., , and M. G. Wells, 2013: The interaction of large amplitude internal seiches with a shallow sloping lakebed: Observations of benthic turbulence in Lake Simcoe, Ontario, Canada. PLoS One, 8, e57444, doi:10.1371/journal.pone.0057444.

    • Search Google Scholar
    • Export Citation
  • Deemer, B. R., , S. M. Henderson, , and J. A. Harrison, 2015: Chemical mixing in the bottom boundary layer of a eutrophic reservoir: The effects of internal seiching on nitrogen dynamics. Limnol. Oceanogr., 60, 16421655, doi:10.1002/lno.10125.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., , and R. J. Greatbatch, 1999: The bolus velocity in the stochastic theory of ocean turbulent tracer transport. J. Phys. Oceanogr., 29, 22322239, doi:10.1175/1520-0485(1999)029<2232:TBVITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1981: Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 3974, doi:10.1080/03091928108208773.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , P. MacCready, , and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, doi:10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Giddings, S. N., , S. G. Monismith, , D. A. Fong, , and M. T. Stacey, 2014: Using depth-normalized coordinates to examine mass transport residual circulation in estuaries with large tidal amplitude relative to the mean depth. J. Phys. Oceanogr., 44, 128148, doi:10.1175/JPO-D-12-0201.1.

    • Search Google Scholar
    • Export Citation
  • Goudsmit, G.-H., , F. Peeters, , M. Gloor, , and A. Wuest, 1997: Boundary mixing versus internal diapycnal mixing in stratified natural waters. J. Geophys. Res., 102, 27 90327 914, doi:10.1029/97JC01861.

    • Search Google Scholar
    • Export Citation
  • Grisouard, N., , and O. Bühler, 2012: Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech., 708, 250278, doi:10.1017/jfm.2012.303.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., , J. D. Zika, , T. McDougal, , B. M. Sloyan, , and F. Laliberté, 2014: The representation of oceanic circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 17351750, doi:10.1175/JPO-D-13-0213.1.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 1992: Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243, 133154, doi:10.1017/S0022112092002660.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. M., 2016: Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche. J. Geophys. Res., 121, doi:10.1002/2015JC011071, in press.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. M., , and B. R. Deemer, 2012: Vertical propagation of lakewide internal waves. Geophys. Res. Lett., 39, L06405, doi:10.1029/2011GL050534.

    • Search Google Scholar
    • Export Citation
  • Horn, D., , J. Imberger, , and G. Ivey, 2001: The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech., 434, 181207, doi:10.1017/S0022112001003536.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P., , and H. van Haren, 2004: Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep Sea Res. II, 51, 29432971, doi:10.1016/j.dsr2.2004.09.016.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1995: Circulation, exchange and water masses at the ocean margin: The role of physical processes at the shelf edge. Prog. Oceanogr., 35, 353431, doi:10.1016/0079-6611(95)80003-C.

    • Search Google Scholar
    • Export Citation
  • Imberger, J., 1998: Flux paths in a stratified lake: A review. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 1–17.

  • Inall, M. E., 2009: Internal wave induced dispersion and mixing on a sloping boundary. Geophys. Res. Lett., 36, L05604, doi:10.1029/2008GL036849.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., , G. Shapiro, , and T. Sherwin, 2001: Mass transport by non-linear internal waves on the Malin Shelf. Cont. Shelf Res., 21, 14491472, doi:10.1016/S0278-4343(01)00020-6.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., , and J. N. Moum, 2003: Internal solitary waves of elevation advancing on a shoaling shelf. J. Geophys. Res., 30, 2045, doi:10.1029/2003GL017706.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 1997: Particle transport by nonbreaking, solitary internal waves. J. Geophys. Res., 102, 18 64118 660, doi:10.1029/97JC00441.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., , B. Hackett, , and L. P. Roed, 1990: High resolution measurements of turbulence, velocity, and stress using pulse-to-pulse coherent sonar. J. Atmos. Oceanic Technol., 7, 1937, doi:10.1175/1520-0426(1990)007<0019:HRMOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M., 1953: Mass transport in water waves. Philos. Trans. Roy. Soc. London, 245A, 535581, doi:10.1098/rsta.1953.0006.

  • Lorke, A., , F. Peeters, , and A. Wüest, 2005: Shear-induced convective mixing in bottom boundary layers on slopes. Limnol. Oceanogr., 50, 16121619, doi:10.4319/lo.2005.50.5.1612.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., 2011: Calculating estuarine exchange flow using isohaline coordinates. J. Phys. Oceanogr., 41, 11161124, doi:10.1175/2011JPO4517.1.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., 2006: Estimating an estuarine mixing and exchange ratio from boundary data with application to Mt. Hope Bay (Massachusetts/Rhode Island). Estuarine Coastal Shelf Sci., 70, 326332, doi:10.1016/j.ecss.2006.06.025.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., , and J. W. Loder, 1989: Skew fluxes in polarized wave fields. J. Phys. Oceanogr., 19, 6876, doi:10.1175/1520-0485(1989)019<0068:SFIPWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W., , and L. Maas, 1986: Tidal-induced buoyancy flux and mean transverse circulation. Cont. Shelf Res., 5, 611628, doi:10.1016/0278-4343(86)90096-8.

    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 344 pp.

  • Phillips, O., , J.-H. Shyu, , and H. Salmun, 1986: An experiment on boundary mixing: Mean circulation and transport rates. J. Fluid Mech., 173, 473499, doi:10.1017/S0022112086001234.

    • Search Google Scholar
    • Export Citation
  • Pineda, J., 1999: Circulation and larval distribution in internal tidal bore warm fronts. Limnol. Oceanogr., 44, 14001414, doi:10.4319/lo.1999.44.6.1400.

    • Search Google Scholar
    • Export Citation
  • Pingree, R., , and B. Le Cann, 1989: Celtic and Amorican slope and shelf residual currents. Prog. Oceanogr., 23, 303338, doi:10.1016/0079-6611(89)90003-7.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2008: Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J. Phys. Oceanogr., 38, 291313, doi:10.1175/2007JPO3559.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , and S. Anderson, 1997: Shear, strain, and Richardson number variations in the thermocline. Part I: Statistical description. J. Phys. Oceanogr., 27, 264281, doi:10.1175/1520-0485(1997)027<0264:SSARNV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , L. Rainville, , and J. Klymak, 2012: Semidiurnal baroclinic wave momentum fluxes at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 12491269, doi:10.1175/JPO-D-11-0124.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1979: Eddy fluxes of conserved quantities by small-amplitude waves. J. Atmos. Sci., 36, 16991704, doi:10.1175/1520-0469(1979)036<1699:EFOCQB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabaei, A., , T. Akylas, , and K. G. Lamb, 2005: Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech., 526, 217243, doi:10.1017/S0022112004002769.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1971: Asymmetry of the internal seiche in Loch Ness. Nature, 231, 306308, doi:10.1038/231306a0.

  • Thorpe, S., 1974: Near-resonant forcing in a shallow two-layer fluid: A model for the internal surge in Loch Ness? J. Fluid Mech., 63, 509527, doi:10.1017/S0022112074001753.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1992: Thermal fronts caused by internal gravity waves reflecting from a slope. J. Phys. Oceanogr., 22, 105108, doi:10.1175/1520-0485(1992)022<0105:TFCBIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1997: On the interactions of internal waves reflecting from slopes. J. Phys. Oceanogr., 27, 20722078, doi:10.1175/1520-0485(1997)027<2072:OTIOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1999: The generation of alongslope currents by breaking internal waves. J. Phys. Oceanogr., 29, 2938, doi:10.1175/1520-0485(1999)029<0029:TGOACB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., , and U. Lemmin, 1999: Internal waves and temperature fronts on slopes. Ann. Geophys., 17, 12271234, doi:10.1007/s00585-999-1227-6.

    • Search Google Scholar
    • Export Citation
  • Umeyama, M., , and T. Shintani, 2014: Transformation, attenuation, setup, and undertow of internal waves on a gentle slope. J. Waterway Port Coastal Ocean Eng., 132, 477486, doi:10.1061/(ASCE)0733-950X(2006)132:6(477).

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , and H. Burchard, 2011: Diapycnal transport and mixing efficiency in stratified boundary layers near sloping topography. J. Phys. Oceanogr., 41, 329345, doi:10.1175/2010JPO4438.1.

    • Search Google Scholar
    • Export Citation
  • Wain, D. J., , and C. R. Rehmann, 2010: Transport by an intrusion generated by boundary mixing in a lake. Water Resour. Res., 46, W08517, doi:10.1029/2009WR008391.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29A, 128136, doi:10.1111/j.2153-3490.1977.tb00716.x.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Walter, R. K., , C. B. Woodson, , P. R. Leary, , and S. G. Monismith, 2014: Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Oceans, 119, 35173534, doi:10.1002/2014JC009998.

    • Search Google Scholar
    • Export Citation
  • Weber, J. E. H., , K. H. Christensen, , and G. Bröstrom, 2014: Stokes drift in internal equatorial Kelvin waves: Continuous stratification versus two-layer models. J. Phys. Oceanogr., 44, 591599, doi:10.1175/JPO-D-13-0135.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1971: Note on some Reynolds stress effects of internal waves on slopes. Deep Sea Res., 7, 583591, doi:10.1016/0011-7471(71)90124-0.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, doi:10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , M. Alford, , and J. B. Mickett, 2015: Characteristics, generation and mass transport of nonlinear internal waves on the Washington continental shelf. J. Geophys. Res. Oceans, 120, 741758, doi:10.1002/2014JC010393.

    • Search Google Scholar
    • Export Citation
  • Zhou, Q., , and P. J. Diamessis, 2015: Lagrangian flows within reflecting internal waves at a horizontal free-slip surface. Phys. Fluids, 27, 126601, http://dx.doi.org/10.1063/1.4936578.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 6
PDF Downloads 68 68 4

Upslope Internal-Wave Stokes Drift, and Compensating Downslope Eulerian Mean Currents, Observed above a Lakebed

View More View Less
  • 1 School of the Environment, Washington State University, Vancouver, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In a small lake, where flows were dominated by internal waves with 10–32-h period, slow but persistent mean transport of water over many wave periods was examined. Acoustic Doppler profilers (ADPs) and a vertical string of temperature loggers were deployed where the lower thermocline intersected the sloping lakebed. Near (<1 m above) the bed, internal waves, coherent with a lakewide seiche, propagated upslope at ~0.023 m s−1. Near-bed wave-induced water velocity fluctuations had a standard deviation of <0.02 m s−1. Near the surface, velocity fluctuations had similar magnitude, but lateral wave propagation was unclear. Averaged over many wave periods, the near-bed Eulerian velocity flowed downslope at ~0.01 m s−1, and was roughly cancelled by an upslope internal-wave Stokes drift (estimated by assuming that weakly nonlinear waves propagated without change of form). To examine net transport, while relaxing approximations used to estimate the Stokes drift, the observed temperature range (9°–25°C) was divided into 0.5°C increments, and the depth-integrated, wave-averaged flux of water in each temperature class was calculated. The coldest (near-bed) water was slowly transported onshore, opposite the Eulerian mean velocity. Onshore flux of warm near-surface water was comparable to an Eulerian-mean flux, indicating minimal near-surface Stokes drift. Intermediate water, from the middle of the water column and the outer boundary layer, was transported offshore by an offshore Stokes drift. The downslope near-bed Eulerian mean velocity, together with intensification of mean stratification within 0.4 m of the bed, may enhance boundary layer mixing.

Denotes Open Access content.

Corresponding author address: Stephen M. Henderson, School of the Environment, Washington State University, 14204 NE Salmon Creek Ave., Vancouver, WA 98686. E-mail: steve_henderson@wsu.edu

Abstract

In a small lake, where flows were dominated by internal waves with 10–32-h period, slow but persistent mean transport of water over many wave periods was examined. Acoustic Doppler profilers (ADPs) and a vertical string of temperature loggers were deployed where the lower thermocline intersected the sloping lakebed. Near (<1 m above) the bed, internal waves, coherent with a lakewide seiche, propagated upslope at ~0.023 m s−1. Near-bed wave-induced water velocity fluctuations had a standard deviation of <0.02 m s−1. Near the surface, velocity fluctuations had similar magnitude, but lateral wave propagation was unclear. Averaged over many wave periods, the near-bed Eulerian velocity flowed downslope at ~0.01 m s−1, and was roughly cancelled by an upslope internal-wave Stokes drift (estimated by assuming that weakly nonlinear waves propagated without change of form). To examine net transport, while relaxing approximations used to estimate the Stokes drift, the observed temperature range (9°–25°C) was divided into 0.5°C increments, and the depth-integrated, wave-averaged flux of water in each temperature class was calculated. The coldest (near-bed) water was slowly transported onshore, opposite the Eulerian mean velocity. Onshore flux of warm near-surface water was comparable to an Eulerian-mean flux, indicating minimal near-surface Stokes drift. Intermediate water, from the middle of the water column and the outer boundary layer, was transported offshore by an offshore Stokes drift. The downslope near-bed Eulerian mean velocity, together with intensification of mean stratification within 0.4 m of the bed, may enhance boundary layer mixing.

Denotes Open Access content.

Corresponding author address: Stephen M. Henderson, School of the Environment, Washington State University, 14204 NE Salmon Creek Ave., Vancouver, WA 98686. E-mail: steve_henderson@wsu.edu
Save