• Alford, M., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M., , M. Cronin, , and J. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M., , J. MacKinnon, , H. Simmons, , and J. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, doi:10.1146/annurev-marine-010814-015746.

    • Search Google Scholar
    • Export Citation
  • Dewar, W., , and A. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, doi:10.1016/j.ocemod.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T., , and D. Straub, 2006: Wind stress dependence on the ocean surface velocity: Implications for mechanical energy input for ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and P. Müller, 1979: Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere. J. Phys. Oceanogr., 9, 104127, doi:10.1175/1520-0485(1979)009<0104:QGROAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., , T. Hibiya, , and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, 768, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Griffies, S., and et al. , 2009: Coordinated Ocean-ice Reference Experiments (CORES). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., , Y. Lu, , and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , B. Briegleb, , G. Danabasoglu, , W. Large, , N. Norton, , S. Jayne, , M. Alford, , and F. Bryan, 2013: On the impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper 13, 173 pp.

  • Melet, A., , R. Hallberg, , A. Legg, , and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, doi:10.1175/JPO-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M., , J. McWilliams, , and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15011517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , J. Willebrand, , and C. Eden, 2012: Ocean Dynamics. Springer, 704 pp., doi:10.1007/978-3-642-23450-7.

  • Pacanowski, R., , and S. Philander, 1981: Parametrization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rath, W., , R. Greatbatch, , and X. Zhai, 2013: Reduction of near-inertial energy through the dependence of wind stress on the ocean-surface velocity. J. Geophys. Res. Oceans, 118, 27612773, doi:10.1002/jgrc.20198.

    • Search Google Scholar
    • Export Citation
  • Rimac, A., , J.-S. von Storch, , C. Eden, , and H. Haak, 2013: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, doi:10.1002/grl.50929.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., , C. Wunsch, , and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342, doi:10.1175/JPO-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Röske, F., 2006: A global heat and freshwater forcing dataset for ocean models. Ocean Modell., 11, 235297, doi:10.1016/j.ocemod.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., , and M. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, doi:10.5670/oceanog.2012.39.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , M. Morley, , and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, M., 1975: Ocean Circulation Physics. Academic Press, 246 pp.

  • Tandon, A., , and C. Garrett, 1996: On a recent parametrization of mesoscale eddies. J. Phys. Oceanogr., 26, 406411, doi:10.1175/1520-0485(1996)026<0406:OARPOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • von Storch, J.-S., , H. Sasaki, , and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10° general circulation model. J. Phys. Oceanogr., 37, 657672, doi:10.1175/JPO3001.1.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., , C. Eden, , I. Fast, , H. Haak, , D. Hernandez-Deckers, , E. Maier-Reimer, , J. Marotzke, , and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , R. Greatbatch, , C. Eden, , and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, doi:10.1175/2009JPO4259.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , H. Johnson, , D. Marshall, , and C. Wunsch, 2012: On the power input to the ocean general circulation. J. Phys. Oceanogr., 42, 1357–1365, doi:10.1175/JPO-D-12-09.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 17
PDF Downloads 118 118 14

The Total Energy Flux Leaving the Ocean’s Mixed Layer

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
  • | 2 Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer, with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.04%) due to subinertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and subinertial fluxes leaving the mixed layer are approximately 40%–50% smaller than the respective fluxes across the Ekman layer according to the method proposed by Stern. The fraction related to transient fluctuations tends to decrease with increasing depth of the mixed layer and with increasing strength of wind stress variability.

Current affiliation: Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands.

Corresponding author address: Antonija Rimac, Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. E-mail: a.rimac@uu.nl

Abstract

The total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer, with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.04%) due to subinertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and subinertial fluxes leaving the mixed layer are approximately 40%–50% smaller than the respective fluxes across the Ekman layer according to the method proposed by Stern. The fraction related to transient fluctuations tends to decrease with increasing depth of the mixed layer and with increasing strength of wind stress variability.

Current affiliation: Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands.

Corresponding author address: Antonija Rimac, Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. E-mail: a.rimac@uu.nl
Save