• Biastoch, A., , C. W. Böning, , J. Getzlaff, , J. M. Molines, , and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , M. S. Lozier, , S. F. Gary, , and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243248, doi:10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , M. S. Lozier, , and S. F. Gary, 2011: The export of Labrador Sea Water from the subpolar North Atlantic: A Lagrangian perspective. Deep-Sea Res. II, 58, 17981818, doi:10.1016/j.dsr2.2010.10.060.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , R. M. Hendry, , D. E. Amrhein, , and J. M. Lilly, 2013: Direct observations of formation and propagation of subpolar eddies into the subtropical North Atlantic. Deep-Sea Res. II, 85, 1541, doi:10.1016/j.dsr2.2012.07.029.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., , and J. Pedlosky, 2003: Vortex generation by topography in locally unstable baroclinic flows. J. Phys. Oceanogr., 33, 207219, doi:10.1175/1520-0485(2003)033<0207:VGBTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., , F. A. Schott, , A. Funk, , and C. S. Martins, 2004: Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry. J. Geophys. Res., 109, C02028, doi:10.1029/2002JC001551.

    • Search Google Scholar
    • Export Citation
  • Burkholder, K. C., , and M. S. Lozier, 2011: Subtropical to subpolar pathways in the North Atlantic. J. Geophys. Res., 116, C07017, doi:10.1029/2010JC006697.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., , B. Barnier, , W. Large, , L. Debreu, , T. Penduff, , J. M. Molines, , and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, doi:10.1175/2008JPO3485.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, B. D., , M. G. Schlax, , and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., , P. B. Rhines, , P. P. Niiler, , and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea Water. J. Phys. Oceanogr., 32, 627647, doi:10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, B., , C. M. Lee, , and B. Petrie, 2011: Volume, freshwater, and heat fluxes through Davis Strait, 2004–05. J. Phys. Oceanogr., 41, 429436, doi:10.1175/2010JPO4536.1.

    • Search Google Scholar
    • Export Citation
  • Curry, B., , C. M. Lee, , B. Petrie, , R. E. Moritz, , and R. Kwok, 2014: Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr., 44, 12441266, doi:10.1175/JPO-D-13-0177.1.

    • Search Google Scholar
    • Export Citation
  • Czeschel, L., 2004: The role of eddies for the deep water formation in the Labrador Sea. Ph.D. thesis, Christian-Albrechts University, 96 pp.

  • Danabasoglu, G., , S. G. Yeager, , Y. O. Kwon, , J. J. Tribbia, , A. S. Phillips, , and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, doi:10.1175/JCLI-D-11-00463.1.

    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., , S. S. Drijfhout, , W. Hazeleger, , H. M. van Aken, , and C. A. Severijns, 2009: Simulations of hydrographic properties in the northwestern North Atlantic Ocean in coupled climate models. J. Climate, 22, 17671786, doi:10.1175/2008JCLI2448.1.

    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., , A. S. Bower, , and H. H. Furey, 2014: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr., 44, 427444, doi:10.1175/JPO-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., , J. Meincke, , S.-A. Malmberg, , and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103151, doi:10.1016/0079-6611(88)90049-3.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and C. W. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., , M. Visbeck, , R. Zantopp, , and N. Nunes, 2010: Interannual to decadal variability of outflow from the Labrador Sea. Geophys. Res. Lett., 37, L24610, doi:10.1029/2010GL045321.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, P. S., , and R. S. Pickart, 2007: The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr., 37, 25092533, doi:10.1175/JPO3123.1.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., , M. S. Lozier, , C. Böning, , and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res. II, 58, 17811797, doi:10.1016/j.dsr2.2010.10.059.

    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., , C. A. Katsman, , and S. S. Drijfhout, 2011: Assessing the role of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr., 41, 21022119, doi:10.1175/JPO-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Haine, T., and et al. , 2008: North Atlantic Deep Water formation in the Labrador Sea, recirculation through the Subpolar Gyre, and discharge to the Subtropics. Arctic–Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 653–701, doi:10.1007/978-1-4020-6774-7_28.

  • Hátún, H., , C. C. Eriksen, , and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, doi:10.1175/2007JPO3567.1.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., , S. Bacon, , J. T. Allen, , and E. L. McDonagh, 2009: Circulation and transport in the western boundary currents at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870, doi:10.1175/2009JPO4160.1.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., , M. A. Spall, , and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983, doi:10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., , and I. Yashayaev, 2015: Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog. Oceanogr., 132, 220232, doi:10.1016/j.pocean.2014.12.010.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., , M. Rhein, , L. Stramma, , W. M. Smethie, , D. A. LeBel, , and W. Zenk, 2006: Changes in the CFC inventories and formation rates of upper Labrador Sea Water, 1997–2001. J. Phys. Oceanogr., 36, 6486, doi:10.1175/JPO2814.1.

    • Search Google Scholar
    • Export Citation
  • Lab Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79, 20332058, doi:10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., 1980: Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmos.–Ocean, 18, 227238, doi:10.1080/07055900.1980.9649089.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., , R. Hendry, , A. Clarke, , I. Yashayaev, , and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990– 2000. Deep-Sea Res. I, 49, 18191835, doi:10.1016/S0967-0637(02)00064-X.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., , R. Burgett, , and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lilly, J. M., , and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, doi:10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., , P. B. Rhines, , F. Schott, , K. Lavender, , J. Lazier, , U. Send, , and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, doi:10.1016/j.pocean.2003.08.013.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., , S. F. Gary, , and A. S. Bower, 2013: Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export. Deep-Sea Res. II, 85, 147153, doi:10.1016/j.dsr2.2012.07.037.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , A. Bracco, , and E. Di Lorenzo, 2011: The interannual variability of the surface eddy kinetic energy in the Labrador Sea. Prog. Oceanogr., 91, 295311, doi:10.1016/j.pocean.2011.01.006.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. J. Stouffer, 1995: Simulation of abrupt climatic change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165167, doi:10.1038/378165a0.

    • Search Google Scholar
    • Export Citation
  • Myers, P. G., , N. Kulan, , and M. H. Ribergaard, 2007: Irminger Water variability in the West Greenland Current. Geophys. Res. Lett., 34, L17601, doi:10.1029/2007GL030419.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., , C. Dong, , T. Dickey, , L. Washburn, , and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1996: MOM 2 documentation user’s guide and reference manual. GFDL Ocean Tech. Rep. 3.2, 329 pp. [Available online at http://www.gfdl.noaa.gov/cms-filesystem-action/model_development/ocean/manual2.2.pdf.]

  • Palter, J. B., , M. S. Lozier, , and K. Lavender, 2008: How does Labrador Sea Water enter the Deep Western Boundary Current? J. Phys. Oceanogr., 38, 968983, doi:10.1175/2007JPO3807.1.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , D. J. Torres, , and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prater, M. D., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427, doi:10.1175/1520-0485(2002)032<0411:EITLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and et al. , 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, doi:10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rykova, T., , F. Straneo, , J. Lilly, , and I. Yashayaev, 2009: Irminger Current anticyclones in the Labrador Sea observed in the hydrographic record, 1990–2004. J. Mar. Res., 67, 361384, doi:10.1357/002224009789954739.

    • Search Google Scholar
    • Export Citation
  • Rykova, T., , F. Straneo, , and A. S. Bower, 2015: Seasonal and interannual variability of the West Greenland Current System in the Labrador Sea in 1993–2008. J. Geophys. Res. Oceans, 120, 13181332, doi:10.1002/2014JC010386.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , L. J. Pratt, , and M. S. Lozier, 2011: Near-surface transport pathways in the North Atlantic Ocean. J. Phys. Oceanogr., 41, 911925, doi:10.1175/2011JPO4498.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , I. Kamenkovich, , P. Berloff, , and L. J. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , F. Dupont, , D. Yang, , P. G. Myers, , I. Yashayaev, , and G. C. Smith, 2014: Role of resolved and parameterized eddies in the labrador sea balance of heat and buoyancy. J. Phys. Oceanogr., 44, 30083032, doi:10.1175/JPO-D-14-0041.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and water mass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628, doi:10.1175/JPO2875.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., , and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, doi:10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., , M. F. de Jong, , and I. Yashayaev, 2011: Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection. Deep-Sea Res. I, 58, 505523, doi:10.1016/j.dsr.2011.02.008.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., , and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54, 251267, doi:10.1023/A:1016168827653.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and C. Cenedese, 2006: Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry. J. Phys. Oceanogr., 36, 395411, doi:10.1175/JPO2857.1.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , and X.-H. Yan, 2014: Lateral heat exchange after the Labrador Sea deep convection. J. Phys. Oceanogr., 44, 29913007, doi:10.1175/JPO-D-13-0198.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 13
PDF Downloads 95 95 18

Seasonal and Interannual Variations of Irminger Ring Formation and Boundary–Interior Heat Exchange in FLAME

View More View Less
  • 1 Duke University, Durham, North Carolina, and Royal Netherlands Institute for Sea Research (NIOZ), Texel, Netherlands
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The contribution of warm-core anticyclones shed by the Irminger Current off West Greenland, known as Irminger rings, to the restratification of the upper layers of the Labrador Sea is investigated in the 1/12° Family of Linked Atlantic Models Experiment (FLAME) model. The model output, covering the 1990–2004 period, shows strong similarities to observations of the Irminger Current as well as ring observations at a mooring located offshore of the eddy formation region in 2007–09. An analysis of fluxes in the model shows that while the majority of heat exchange with the interior indeed occurs at the site of the Irminger Current instability, the contribution of the coherent Irminger rings is modest (18%). Heat is provided to the convective region mainly through noncoherent anomalies and enhanced local mixing by the rings facilitating further exchange between the boundary and interior. The time variability of the eddy kinetic energy and the boundary to interior heat flux in the model are strongly correlated to the density gradient between the dense convective region and the more buoyant boundary current. In FLAME, the density variations of the boundary current are larger than those of the convective region, thereby largely controlling changes in lateral fluxes. Synchronous long-term trends in temperature in the boundary and the interior over the 15-yr simulation suggest that the heat flux relative to the temperature of the interior is largely steady on these time scales.

Denotes Open Access content.

Corresponding author address: M. F. de Jong, Nicholas School of the Environment, Duke University, 5117 Environment Hall, Box 90328, Durham, NC 27708-0328. E-mail: femke.de.jong@duke.edu

Abstract

The contribution of warm-core anticyclones shed by the Irminger Current off West Greenland, known as Irminger rings, to the restratification of the upper layers of the Labrador Sea is investigated in the 1/12° Family of Linked Atlantic Models Experiment (FLAME) model. The model output, covering the 1990–2004 period, shows strong similarities to observations of the Irminger Current as well as ring observations at a mooring located offshore of the eddy formation region in 2007–09. An analysis of fluxes in the model shows that while the majority of heat exchange with the interior indeed occurs at the site of the Irminger Current instability, the contribution of the coherent Irminger rings is modest (18%). Heat is provided to the convective region mainly through noncoherent anomalies and enhanced local mixing by the rings facilitating further exchange between the boundary and interior. The time variability of the eddy kinetic energy and the boundary to interior heat flux in the model are strongly correlated to the density gradient between the dense convective region and the more buoyant boundary current. In FLAME, the density variations of the boundary current are larger than those of the convective region, thereby largely controlling changes in lateral fluxes. Synchronous long-term trends in temperature in the boundary and the interior over the 15-yr simulation suggest that the heat flux relative to the temperature of the interior is largely steady on these time scales.

Denotes Open Access content.

Corresponding author address: M. F. de Jong, Nicholas School of the Environment, Duke University, 5117 Environment Hall, Box 90328, Durham, NC 27708-0328. E-mail: femke.de.jong@duke.edu
Save