• Agrawal, Y. C., , E. A. Terray, , M. A. Donelan, , P. A. Hwang, , A. J. Williams III, , W. M. Drennan, , K. K. Kahma, , and S. A. Krtaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and et al. , 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definitions, calibration, and validations. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., , and Y. P. Soloviev, 1998: Field investigation of transformation of wind wave frequency spectrum with fetch and stage of development. J. Phys. Oceanogr., 28, 563576, doi:10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banner, M., , J. Gemmrich, , and D. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375, doi:10.1175/1520-0485(2002)032<3364:MMOOWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and et al. , 2008: Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Prog. Oceanogr., 76, 399442, doi:10.1016/j.pocean.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deane, G. B., , M. D. Stokes, , and A. H. Callaghan, 2016: The saturation of fluid turbulence in breaking laboratory waves and implications for whitecaps. J. Phys. Oceanogr., 46, 975992, doi:10.1175/JPO-D-14-0187.1.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , M. A. Donelan, , E. A. Terray, , and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements during SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2012: Observations of the surfzone turbulent dissipation rate. J. Phys. Oceanogr., 42, 386399, doi:10.1175/JPO-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gemmrich, J., , and D. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086, doi:10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., , T. Mudge, , and V. Polonichko, 1994: On the energy input from wind to surface waves. J. Phys. Oceanogr., 24, 24132417, doi:10.1175/1520-0485(1994)024<2413:OTEIFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., , R. J. Chant, , and J. L. Wilkin, 2013: Breaking surface wave effects on river plume dynamics during upwelling-favorable winds. J. Phys. Oceanogr., 43, 19591980, doi:10.1175/JPO-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Goring, D. G., , and V. I. Nikora, 2002: Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng., 128, 117126, doi:10.1061/(ASCE)0733-9429(2002)128:1(117).

    • Search Google Scholar
    • Export Citation
  • Govender, K., , G. P. Mocke, , and M. J. Alport, 2004: Dissipation of isotropic turbulence and length-scale measurements through the wave roller in laboratory spilling waves. J. Geophys. Res., 109, C08018, doi:10.1029/2003JC002233.

  • Herbers, T. H. C., , P. F. Jessen, , T. T. Janssen, , D. B. Colbert, , and J. H. MacMahan, 2012: Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Oceanic Technol., 29, 944–959, doi:10.1175/JTECH-D-11-00128.1.

  • Hogan, T., and et al. , 2014: The navy global environmental model. Oceanography, 27, 116125, doi:10.5670/oceanog.2014.73.

  • Hwang, P. A., , F. J. Ocampo-Torres, , and H. García-Nava, 2012: Wind sea and swell separation of 1D wave spectrum by a spectrum integration method. J. Atmos. Oceanic Technol., 29, 116128, doi:10.1175/JTECH-D-11-00075.1.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1983: On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr., 13, 816827, doi:10.1175/1520-0485(1983)013<0816:OTTOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSR, 30, 301305.

  • Kukulka, T., , and K. Brunner, 2015: Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions. J. Geophys. Res. Oceans, 120, 3837–3858, doi:10.1002/2014JC010487.

  • Lamarre, E., , and W. Melville, 1991: Air entrainment and dissipation in breaking waves. Nature, 351, 469472, doi:10.1038/351469a0.

  • Lim, H.-J., , K.-A. Chang, , Z.-C. Huang, , and B. Na, 2015: Experimental study on plunging breaking waves in deep water. J. Geophys. Res. Oceans, 120, 2007–2049, doi:10.1002/2014JC010269.

  • McWilliams, J. C., , E. Huckle, , J.-H. Liang, , and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24, 20412049, doi:10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , H. S. Min, , and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, doi:10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Plant, B., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19611967, doi:10.1029/JC087iC03p01961.

  • Schwendeman, M., , and J. Thomson, 2015: Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res. Oceans, 120, 8346–8363, doi:10.1002/2015JC011196.

  • Schwendeman, M., , J. Thomson, , and J. Gemmrich, 2014: Wave breaking dissipation in a young wind sea. J. Phys. Oceanogr., 44, 104127, doi:10.1175/JPO-D-12-0237.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, doi:10.1017/S0022112004008882.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., , and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Search Google Scholar
    • Export Citation
  • Terray, E., , M. Donelan, , Y. Agrawal, , W. Drennan, , K. Kahma, , A. Williams, , P. Hwang, , and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with SWIFT drifters. J. Atmos. Oceanic Technol., 29, 18661882, doi:10.1175/JTECH-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., , J. R. Gemmrich, , and A. T. Jessup, 2009: Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett., 36, L11601, doi:10.1029/2009GL038201.

  • Thomson, J., , E. A. D’Asaro, , M. Cronin, , E. Rogers, , R. Harcourt, , and A. Schcerbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 5951–5962, doi:10.1002/2013JC008837.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., , A. R. Horner-Devine, , S. Zippel, , C. Rusch, , and W. Geyer, 2014: Wave breaking turbulence at the offshore front of the Columbia River plume. Geophys. Res. Lett., 41, 89878993, doi:10.1002/2014GL062274.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782797, doi:10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., , and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and et al. , 2014: User manual and system documentation of WAVEWATCH III version 4.18. NOAA/NWS/NCEP/MMAB Tech. Note 316, 282 pp.

  • Wiles, P., , T. P. Rippeth, , J. Simpson, , and P. Hendricks, 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett., 33, L21608, doi:10.1029/2006GL027050.

  • Yelland, M., , P. Taylor, , I. Consterdine, , and M. Smith, 1994: The use of the inertial dissipation technique for shipboard wind stress determination. J. Atmos. Oceanic Technol., 11, 10931108, doi:10.1175/1520-0426(1994)011<1093:TUOTID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., , W. R. McGillis, , P. A. Raymond, , J. B. Edson, , E. J. Hintsa, , H. J. Zemmelink, , J. W. H. Dacey, , and D. T. Ho, 2007: Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett., 34, L10601, doi:10.1029/2006GL028790.

  • Zippel, S., , and J. Thomson, 2015: Wave breaking and turbulence at a tidal inlet. J. Geophys. Res. Oceans, 120, 1016–1031, doi:10.1002/2014JC010025.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 205 27
PDF Downloads 188 188 21

Wave-Breaking Turbulence in the Ocean Surface Layer

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 2 Oregon State University, Corvallis, Oregon
  • | 3 University of Victoria, Victoria, British Columbia, Canada
  • | 4 Naval Research Laboratory, Stennis Space Center, Louisiana
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observations of winds, waves, and turbulence at the ocean surface are compared with several analytic formulations and a numerical model for the input of turbulent kinetic energy by wave breaking and the subsequent dissipation. The observations are generally consistent with all of the formulations, although some differences are notable at winds greater than 15 m s−1. The depth dependence of the turbulent dissipation rate beneath the waves is fit to a decay scale, which is sensitive to the choice of vertical reference frame. In the surface-following reference frame, the strongest turbulence is isolated within a shallow region of depths much less than one significant wave height. In a fixed reference frame, the strong turbulence penetrates to depths that are at least half of the significant wave height. This occurs because the turbulence of individual breakers persists longer than the dominant period of the waves and thus the strong surface turbulence is carried from crest to trough with the wave orbital motion.

Denotes Open Access content.

Corresponding author address: Jim Thomson, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: jthomson@apl.washington.edu

Abstract

Observations of winds, waves, and turbulence at the ocean surface are compared with several analytic formulations and a numerical model for the input of turbulent kinetic energy by wave breaking and the subsequent dissipation. The observations are generally consistent with all of the formulations, although some differences are notable at winds greater than 15 m s−1. The depth dependence of the turbulent dissipation rate beneath the waves is fit to a decay scale, which is sensitive to the choice of vertical reference frame. In the surface-following reference frame, the strongest turbulence is isolated within a shallow region of depths much less than one significant wave height. In a fixed reference frame, the strong turbulence penetrates to depths that are at least half of the significant wave height. This occurs because the turbulence of individual breakers persists longer than the dominant period of the waves and thus the strong surface turbulence is carried from crest to trough with the wave orbital motion.

Denotes Open Access content.

Corresponding author address: Jim Thomson, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: jthomson@apl.washington.edu
Save