• Abry, P., , S. Fauve, , P. Flandrin, , and C. Laroche, 1994: Analysis of pressure fluctuations in swirling turbulent flows. J. Phys. II, 4, 725733.

    • Search Google Scholar
    • Export Citation
  • Agrawal, Y. C., , E. A. Terray, , M. A. Donelan, , P. A. Hwang, , A. J. Williams III, , W. M. Drennan, , K. K. Kahma, , and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Anis, A., , and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045, doi:10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two equation turbulence models. J. Phys. Oceanogr., 31, 31333145, doi:10.1175/1520-0485(2001)031<3133:STWELU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, N., , S. Chen, , and G. D. Doolen, 1999: Statistics and structures of pressure in isotropic turbulence. Phys. Fluids, 11, 22352250, doi:10.1063/1.870085.

    • Search Google Scholar
    • Export Citation
  • Chang, K. A., , and P. L. F. Liu, 1998: Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids, 10, 327329, doi:10.1063/1.869544.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dommermuth, D. G., , D. K. Yue, , W. M. Lin, , R. J. Rapp, , E. S. Chan, , and W. K. Melville, 1988: Deep-water plunging breakers: A comparison between potential theory and experiments. J. Fluid Mech., 189, 423442, doi:10.1017/S0022112088001089.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029, doi:10.1029/JC092iC05p04971.

    • Search Google Scholar
    • Export Citation
  • Douady, S., , Y. Couder, , and M. E. Brachet, 1991: Direct observations of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett., 67, 983986, doi:10.1103/PhysRevLett.67.983.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , M. A. Donelan, , E. A. Terray, , and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elliott, J. A., 1972: Instrumentation for measuring static pressure fluctuations within the atmospheric boundary layer. Bound.-Layer Meteor., 2, 476495, doi:10.1007/BF00821550.

    • Search Google Scholar
    • Export Citation
  • Fauve, S., , C. Laroche, , and B. Castaing, 1993: Pressure fluctuations in swirling turbulent flows. J. Phys. II, 3, 271278.

  • Feddersen, F., , J. H. Trowbridge, , and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 17641777, doi:10.1175/JPO3098.1.

    • Search Google Scholar
    • Export Citation
  • Fisher, A. W., , L. P. Sanford, , and S. E. Suttles, 2015: Wind stress dynamics in Chesapeake Bay: Spatiotemporal variability and wave dependence in a fetch-limited environment. J. Phys. Oceanogr., 45, 26792696, doi:10.1175/JPO-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gerbi, G. P., , J. H. Trowbridge, , J. B. Edson, , A. J. Plueddemann, , E. A. Terray, , and J. J. Fredericks, 2008: Measurements of momentum and heat flux across the air–sea interface. J. Phys. Oceanogr., 38, 10541072, doi:10.1175/2007JPO3739.1.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., , J. H. Trowbridge, , E. A. Terray, , A. J. Plueddemann, , and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, doi:10.1175/2008JPO4044.1.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , C. W. Fairall, , J. E. Hare, , J. B. Edson, , and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, doi:10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., , and R. T. Guza, 1994: Nonlinear wave interactions and high‐frequency seafloor pressure. J. Geophys. Res., 99, 10 03510 048, doi:10.1029/94JC00054.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1999: On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J. Phys. Oceanogr., 29, 530534, doi:10.1175/1520-0485(1999)029<0530:OTEOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , J. C. Wyngaard, , Y. Izumi, , and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, doi:10.1029/JC074i028p06991.

  • Kitaigorodskii, S. A., 1983: On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr., 13, 816827, doi:10.1175/1520-0485(1983)013<0816:OTTOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lumley, J., , and E. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13, 20002007, doi:10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBean, G. A., , and J. A. Elliott, 1975: The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J. Atmos. Sci., 32, 753766, doi:10.1175/1520-0469(1975)032<0753:TVTOKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , P. P. Sullivan, , and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , E. Huckle, , J. H. Liang, , and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., , F. Veron, , and C. White, 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454, 203233, doi:10.1017/S0022112001007078.

    • Search Google Scholar
    • Export Citation
  • Metais, O., , and M. Lesieur, 1992: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239, 157194, doi:10.1017/S0022112092004361.

    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., 1985: A note on the momentum transfer from wind to waves. J. Geophys. Res., 90, 33433345, doi:10.1029/JC090iC02p03343.

    • Search Google Scholar
    • Export Citation
  • Pizzo, N. E., , and W. K. Melville, 2013: Vortex generation by deep-water breaking waves. J. Fluid Mech., 734, 198218, doi:10.1017/jfm.2013.453.

    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., , and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, A331, 735800, doi:10.1098/rsta.1990.0098.

    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., , J. A. Smith, , and R. A. Weller, 1994: Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res., 99, 22 58922 596, doi:10.1029/94JC02215.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., , A. W. Fisher, , S. E. Suttles, , L. P. Sanford, , and W. C. Boicourt, 2015: Characterization and modulation of Langmuir circulation in Chesapeake Bay. J. Phys. Oceanogr., 45, 26212639, doi:10.1175/JPO-D-14-0239.1.

    • Search Google Scholar
    • Export Citation
  • She, Z.-S., , E. Jackson, , and S. A. Orszag, 1990: Intermittent vortex structures in homogeneous isotropic turbulence. Nature, 344, 226228, doi:10.1038/344226a0.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams III, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., 1998: On a technique for measurement of turbulent Reynolds stress in the presence of surface waves. J. Atmos. Oceanic Technol., 15, 290298, doi:10.1175/1520-0426(1998)015<0290:OATFMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., , S. Oncley, , and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., , and O. R. Cote, 1972: Cospectral similarity in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 98, 590603, doi:10.1002/qj.49709841708.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., , A. Siegel, , and J. M. Wilczak, 1994: On the response of a turbulent-pressure probe and the measurement of pressure transport. Bound.-Layer Meteor., 69, 379396, doi:10.1007/BF00718126.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 16
PDF Downloads 73 73 15

Observations of the Transfer of Energy and Momentum to the Oceanic Surface Boundary Layer beneath Breaking Waves

View More View Less
  • 1 Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.

Denotes Open Access content.

Corresponding author address: Malcolm E. Scully, Applied Ocean Physics and Engineering Dept., Woods Hole Oceanographic Institution, Mail Stop #10, Woods Hole, MA 02543. E-mail: mscully@whoi.edu

Abstract

Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.

Denotes Open Access content.

Corresponding author address: Malcolm E. Scully, Applied Ocean Physics and Engineering Dept., Woods Hole Oceanographic Institution, Mail Stop #10, Woods Hole, MA 02543. E-mail: mscully@whoi.edu
Save