• Abernathey, R., , and C. Wortham, 2015: Phase speed cross spectra of eddy heat fluxes in the Pacific. J. Phys. Oceanogr., 45, 12851301, doi:10.1175/JPO-D-14-0160.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., , J. Marshall, , M. Mazloff, , and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., , C. B. Rocha, , F. Poulin, , and M. Jansen, 2015: pyqg: v0.1.4. Zenodo, doi:10.5281/zenodo.32539.

  • Arbic, B. K., , and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 22572273, doi:10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bates, M., , R. Tulloch, , J. Marshall, , and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, doi:10.1175/JPO-D-13-0130.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., , and I. Kamekovich, 2013a: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 25052527, doi:10.1175/JPO-D-12-0232.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., , and I. Kamekovich, 2013b: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 25282544, doi:10.1175/JPO-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, doi:10.1126/science.272.5259.234.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , R. M. Samelson, , and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Cipollini, P., , D. Cromwell, , M. S. Jones, , G. D. Quartly, , and P. G. Challenor, 1997: Concurrent altimeter and infrared observations of Rossby wave propagation near 34°N of the northeast Atlantic. Geophys. Res. Lett., 24, 889892, doi:10.1029/97GL00758.

    • Search Google Scholar
    • Export Citation
  • Cipollini, P., , D. Cromwell, , P. G. Challenor, , and S. Raffaglio, 2001: Rossby waves detected in global ocean colour data. Geophys. Res. Lett., 28, 323326, doi:10.1029/1999GL011231.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1998: On “too fast” baroclinic planetary waves in the general circulation. J. Phys. Oceanogr., 28, 17391758, doi:10.1175/1520-0485(1998)028<1739:OTFBPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Early, J. J., , R. M. Samelson, , and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, doi:10.1175/2011JPO4601.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381, doi:10.1016/0377-0265(78)90002-7.

    • Search Google Scholar
    • Export Citation
  • Fu, L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, doi:10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., , J. S. A. Green, , and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, doi:10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., , and K. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes fur Seeschifffahrt und Hydrographie Rep. 35/2005, 52 pp.

  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. L., , I. S. Robinson, , and P. Cipollini, 2000: Propagation characteristics of extratropical planetary waves observed in the ATSR global sea surface temperature record. J. Geophys. Res., 105 (C9), 21 92721 945, doi:10.1029/2000JC900067.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E., 1961: On the effect of friction in baroclinic waves. Tellus, 13, 363367, doi:10.1111/j.2153-3490.1961.tb00097.x.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Jansen, M. F., , and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 3648, doi:10.1016/j.ocemod.2014.06.002.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., , A. J. Adcroft, , R. Hallberg, , and I. M. Held, 2015: Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modell., 92, 2841, doi:10.1016/j.ocemod.2015.05.007.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2003: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, doi:10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2004: The dispersion relation for planetary waves in the presence of mean flow and topography. Part I: Analytical theory and one-dimensional examples. J. Phys. Oceanogr., 34, 26922711, doi:10.1175/JPO2635.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2005: The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: Two-dimensional examples and global results. J. Phys. Oceanogr., 35, 21102133, doi:10.1175/JPO2817.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2007: Planetary wave response to surface forcing and instability in the presence of mean flow and topography. J. Phys. Oceanogr., 37, 12971320, doi:10.1175/JPO3055.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , D. B. Chelton, , and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, doi:10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., , and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., , and D. P. Marshall, 2014: Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett., 41, 35173521, doi:10.1002/2014GL060001.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., , R. Ferrari, , and J. H. LaCasce, 2012a: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, doi:10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., , R. Ferrari, , J. H. LaCasce, , and S. T. Merrifield, 2012b: Reconciling float-based and tracer-based estimates of lateral diffusivities. J. Mar. Res., 70, 569602, doi:10.1357/002224012805262743.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M., , and G. Vallis, 1991: Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321342.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , E. Shuckburgh, , H. Jones, , and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, doi:10.1175/JPO2949.1.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., , P. Heimbach, , and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • McWilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, T. W. Hecht and H. Hasumi, Eds., American Geophysical Union, 5–15.

  • McWilliams, J. C., , and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, doi:10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1981: On the β-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 11, 16621672, doi:10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer Verlag, 624 pp.

  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, doi:10.1017/S0022112075001504.

  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, doi:10.1146/annurev.fl.11.010179.002153.

  • Scott, R. B., , and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769, doi:10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, doi:10.1098/rspa.1938.0032.

  • Thompson, A., , and W. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231, doi:10.1175/JAS4000.1.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., , J. Marshall, , and K. S. Smith, 2009: Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. J. Geophys. Res., 114, C02005, doi:10.1029/2008JC005055.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., , J. Marshall, , C. Hill, , and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Waterman, S., , N. G. Hogg, , and S. R. Jayne, 2011: Eddy–mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, doi:10.1175/2010JPO4564.1.

    • Search Google Scholar
    • Export Citation
  • Wortham, C. J. L., 2013: A multi-dimensional spectral description of ocean variability with applications. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution joint program, 184 pp.

  • Wortham, C. J. L., , J. Callies, , and M. G. Scharffenberg, 2014: Asymmetries between wavenumber spectra of along- and across-track velocity from tandem mission altimetry. J. Phys. Oceanogr., 44, 11511160, doi:10.1175/JPO-D-13-0153.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, doi:10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2009: The oceanic variability spectrum and transport trends. Atmos.–Ocean, 47, 281291, doi:10.3137/OC310.2009.

  • Wunsch, C., , and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

    • Search Google Scholar
    • Export Citation
  • Zang, X., , and C. Wunsch, 1999: The observed dispersion relationship for North Pacific Rossby wave motions. J. Phys. Oceanogr., 29, 21832190, doi:10.1175/1520-0485(1999)029<2183:TODRFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 8
PDF Downloads 142 142 7

Eddy Phase Speeds in a Two-Layer Model of Quasigeostrophic Baroclinic Turbulence with Applications to Ocean Observations

View More View Less
  • 1 The University of Chicago, Chicago, Illinois
  • | 2 Columbia University, New York, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The phase speed spectrum of ocean mesoscale eddies is fundamental to understanding turbulent baroclinic flows. Since eddy phase propagation has been shown to modulate eddy fluxes, an understanding of eddy phase speeds is also of practical importance for the development of improved eddy parameterizations for coarse resolution ocean models. However, it is not totally clear whether and how linear Rossby wave theory can be used to explain the phase speed spectra in various weakly turbulent flow regimes. Using linear analysis, theoretical constraints are identified that control the eddy phase speed in a two-layer quasigeostrophic (QG) model. These constraints are then verified in a series of nonlinear two-layer QG simulations, spanning a range of parameters with potential relevance to the ocean. In the two-layer QG model, the strength of the inverse cascade exerts an important control on the eddy phase speed. If the inverse cascade is weak, the phase speed spectrum is reasonably well approximated by the phase speed of the linearly most unstable mode. A significant inverse cascade instead leads to barotropization, which in turn leads to mean phase speeds closer to those of barotropic-mode Rossby waves. The two-layer QG results are qualitatively consistent with the observed eddy phase speed spectra in the Antarctic Circumpolar Current and may also shed light on the interpretation of phase speed spectra observed in other regions.

Corresponding author address: Lei Wang, Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: leiw@uchicago.edu

Abstract

The phase speed spectrum of ocean mesoscale eddies is fundamental to understanding turbulent baroclinic flows. Since eddy phase propagation has been shown to modulate eddy fluxes, an understanding of eddy phase speeds is also of practical importance for the development of improved eddy parameterizations for coarse resolution ocean models. However, it is not totally clear whether and how linear Rossby wave theory can be used to explain the phase speed spectra in various weakly turbulent flow regimes. Using linear analysis, theoretical constraints are identified that control the eddy phase speed in a two-layer quasigeostrophic (QG) model. These constraints are then verified in a series of nonlinear two-layer QG simulations, spanning a range of parameters with potential relevance to the ocean. In the two-layer QG model, the strength of the inverse cascade exerts an important control on the eddy phase speed. If the inverse cascade is weak, the phase speed spectrum is reasonably well approximated by the phase speed of the linearly most unstable mode. A significant inverse cascade instead leads to barotropization, which in turn leads to mean phase speeds closer to those of barotropic-mode Rossby waves. The two-layer QG results are qualitatively consistent with the observed eddy phase speed spectra in the Antarctic Circumpolar Current and may also shed light on the interpretation of phase speed spectra observed in other regions.

Corresponding author address: Lei Wang, Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: leiw@uchicago.edu
Save