• Cenedese, C., , J. A. Whitehead, , T. A. Ascarelli, , and M. Ohiwa, 2004: A dense current flowing down a sloping bottom in a rotating fluid. J. Phys. Oceanogr., 34, 188203, doi:10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corr, H. F. J., , A. Jenkins, , K. W. Nicholls, , and C. S. M. Doake, 2002: Precise measurement of changes in ice-shelf thickness by phase-sensitive radar to determine basal melt rates. Geophys. Res. Lett., 29, doi:10.1029/2001GL014618.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., , and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics. 2nd ed. Academic Press, 828 pp.

  • Dansereau, V., , P. Heimbach, , and M. Losch, 2014: Simulation of subice shelf melt rates in a general circulation model: Velocity-dependent transfer and the role of friction. J. Geophys. Res. Oceans, 119, 17651790, doi:10.1002/2013JC008846.

    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., , J. L. Bamber, , J. A. Griggs, , J. T. M. Lenaerts, , S. R. M. Ligtenberg, , M. R. van den Broeke, , and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, doi:10.1038/nature12567.

    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., , D. G. Vaughan, , H. F. J. Corr, , A. Jenkins, , P. R. Holland, , I. Joughin, , and A. H. Fleming, 2013: Pine Island Glacier ice shelf melt distributed at kilometre scales. Cryosphere, 7, 15431555, doi:10.5194/tc-7-1543-2013.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , P. MacCready, , and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, doi:10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Hattermann, T., , O. A. Nøst, , J. M. Lilly, , and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, doi:10.1029/2012GL051012.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., , and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, doi:10.1029/91JC01842.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., , H. F. J. Corr, , K. W. Nicholls, , C. L. Stewart, , and C. S. M. Doake, 2006: Interactions between ice and ocean observed with phase-sensitive radar near an Antarctic ice shelf grounding line. J. Glaciol., 52, 325346, doi:10.3189/172756506781828502.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., 1985: Evolution of tidally triggered meltwater plumes below ice shelves. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 133–143.

  • McPhee, M., 2008: Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 224 pp.

  • Nicholls, K. W., , S. Østerhus, , K. Makinson, , T. Gammelsrød, , and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, doi:10.1029/2007RG000250.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1983: The translation of isolated cold eddies on a sloping bottom. Deep-Sea Res., 30, 171182, doi:10.1016/0198-0149(83)90067-5.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 2010: The Microclimate of Valley Glaciers. Universiteitsbibliotheek Utrecht, 138 pp.

  • Price, J. F., , and M. O. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, doi:10.1016/0079-6611(94)90027-2.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., , S. R. M. Ligtenberg, , H. A. Fricker, , D. G. Vaughan, , M. R. van den Broeke, , and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, doi:10.1038/nature10968.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , and K. Steffen, 2008: Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35, L02503, doi:10.1029/2007GL031765.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , S. Jacobs, , J. Mouginot, , and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Search Google Scholar
    • Export Citation
  • Shapiro, G. I., , and A. E. Hill, 1997: Dynamics of dense water cascades at the shelf edge. J. Phys. Oceanogr., 27, 23812394, doi:10.1175/1520-0485(1997)027<2381:DODWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stanton, T. P., and et al. , 2013: Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science, 341, 12361239, doi:10.1126/science.1239373.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., , and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733743, doi:10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wåhlin, A. K., 2002: Topographic steering of dense currents with application to submarine canyons. Deep-Sea Res. I, 49, 305320, doi:10.1016/S0967-0637(01)00058-9.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , M. Ikeda, , and F. J. Saucier, 2003: A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes. J. Geophys. Res., 108, 3161, doi:10.1029/2000JC000517.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 257 17
PDF Downloads 178 178 18

A Simple Model of the Ice Shelf–Ocean Boundary Layer and Current

View More View Less
  • 1 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves, but an understanding of what determines melt rates is hampered by limited knowledge of the buoyancy- and frictionally controlled flows along the ice shelf base that regulate heat transfer from ocean to ice. In an attempt to address this deficiency, a simple model of a buoyant boundary flow, considering only the spatial dimension perpendicular to the boundary, is presented. Results indicate that two possible flow regimes exist: a weakly stratified, geostrophic cross-slope current with upslope flow within a buoyant Ekman layer or a strongly stratified, upslope current with a weak cross-slope flow. The latter regime, which is analogous to the steady solution for a katabatic wind, is most appropriate when the ice–ocean interface is steep. For the gentle slopes typical of Antarctic ice shelves, the buoyant Ekman regime, which has similarities with the case of an unstratified density current on a slope, provides some useful insight. When combined with a background flow, a range of possible near-ice current profiles emerge as a result of arrest or enhancement of the upslope Ekman transport. A simple expression for the upslope transport can be formed that is analogous to that for the wind-forced surface Ekman layer, with curvature of the ice shelf base replacing the wind stress curl in driving exchange between the Ekman layer and the geostrophic current below.

Corresponding author address: Adrian Jenkins, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: ajen@bas.ac.uk

Abstract

Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves, but an understanding of what determines melt rates is hampered by limited knowledge of the buoyancy- and frictionally controlled flows along the ice shelf base that regulate heat transfer from ocean to ice. In an attempt to address this deficiency, a simple model of a buoyant boundary flow, considering only the spatial dimension perpendicular to the boundary, is presented. Results indicate that two possible flow regimes exist: a weakly stratified, geostrophic cross-slope current with upslope flow within a buoyant Ekman layer or a strongly stratified, upslope current with a weak cross-slope flow. The latter regime, which is analogous to the steady solution for a katabatic wind, is most appropriate when the ice–ocean interface is steep. For the gentle slopes typical of Antarctic ice shelves, the buoyant Ekman regime, which has similarities with the case of an unstratified density current on a slope, provides some useful insight. When combined with a background flow, a range of possible near-ice current profiles emerge as a result of arrest or enhancement of the upslope Ekman transport. A simple expression for the upslope transport can be formed that is analogous to that for the wind-forced surface Ekman layer, with curvature of the ice shelf base replacing the wind stress curl in driving exchange between the Ekman layer and the geostrophic current below.

Corresponding author address: Adrian Jenkins, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: ajen@bas.ac.uk
Save