• Brekhovskikh, L. M., 1966: Underwater sound waves generated by surface waves in the ocean. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 2, 970980.

    • Search Google Scholar
    • Export Citation
  • Deane, G. B., , and M. D. Stokes, 2010: Model calculations of the underwater noise of breaking waves and comparison with experiment. J. Acoust. Soc. Amer., 127, 33943410, doi:10.1121/1.3419774.

    • Search Google Scholar
    • Export Citation
  • Dorman, L. M., , A. E. Schreiner, , L. D. Bibee, , and J. A. Hildebrand, 1993: Deep-water sea-floor array observations of seismo-acoustic noise in the eastern Pacific and comparisons with wind and swell. Natural Physical Sources of Underwater Sound, Sea Surface Sound (2), B. R. Kerman, Ed., Kluwer Academic Publishers, 165–174, doi:10.1007/978-94-011-1626-8_14.

  • Duennebier, F. K., , R. Lukas, , E. Nosal, , J. Aucan, , and R. Weller, 2012: Wind, waves, and acoustic background levels at Station ALOHA. J. Geophys. Res., 117, C03017, doi:10.1029/2011JC007267.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: CY41R1 official IFS documentation. Accessed April 2016. [Available online at https://software.ecmwf.int/wiki/display/IFS/CY41R1+Official+IFS+Documentation.]

  • Farrell, W. E., , and W. Munk, 2010: Booms and busts in the deep. J. Phys. Oceanogr., 40, 21592169, doi:10.1175/2010JPO4440.1.

  • Farrell, W. E., , and W. Munk, 2013: Surface gravity waves and their acoustic signatures, 1–30 Hz, on the mid-Pacific sea floor. J. Acoust. Soc. Amer., 134, 31343143, doi:10.1121/1.4818780.

    • Search Google Scholar
    • Export Citation
  • Gaul, R. D., , D. P. Knobles, , J. A. Shooter, , and A. F. Wittenborn, 2007: Ambient noise analysis of deep-ocean measurements in the northeast Pacific. IEEE J. Oceanic Eng., 32, 497512, doi:10.1109/JOE.2007.891885.

    • Search Google Scholar
    • Export Citation
  • Goncharov, V. V., 1970: Sound generation in the ocean by the interaction of surface waves and turbulence. Izv. Atmos. Ocean. Phys., 6, 11891196.

    • Search Google Scholar
    • Export Citation
  • Guralnik, Z., , X. Zabalgogeazcoa, , J. Bourdelais, , and W. E. Farrell, 2013: Wave–wave interactions and deep ocean acoustics. J. Acoust. Soc. Amer., 134, 31613173, doi:10.1121/1.4818782.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1963: A statistical analysis of the generation of microseisms. Rev. Geophys., 1, 177210, doi:10.1029/RG001i002p00177.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2008: Progress in ocean wave forecasting. J. Comput. Phys., 227, 35723594, doi:10.1016/j.jcp.2007.04.029.

  • Knudsen, V. O., 1948: Underwater ambient noise. J. Mar. Res., 7, 410429.

  • Longuet-Higgins, M. S., 1950: A theory of microseisms. Philos. Trans. Roy. Soc. London, A243, 135, doi:10.1098/rsta.1950.0012.

  • McCreery, C. S., , F. K. Duennebier, , and G. H. Sutton, 1993: Correlation of deep ocean noise (0.4–30 hz) with wind, and the Holu spectrum—A worldwide constant. J. Acoust. Soc. Amer., 93, 26392648, doi:10.1121/1.405838.

    • Search Google Scholar
    • Export Citation
  • Oguz, H. N., 1994: A theoretical study of low-frequency oceanic ambient noise. J. Acoust. Soc. Amer., 95, 18951912, doi:10.1121/1.408704.

    • Search Google Scholar
    • Export Citation
  • Stephen, R. A., and et al. , 2014: Ocean Bottom Seismometer Augmentation in the North Pacific (OBSANP)—Cruise report. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2014-03, 241 pp., doi:10.1575/1912/7130.

  • Sverdrup, H. U., , and W. H. Munk, 1947: Wind, sea, and swell: Theory of relations for forecasting. U. S. Hydrographic Office Tech. Rep. 1, 36 pp.

  • Wilson, J. D., , and N. C. Makris, 2006: Ocean acoustic hurricane classification. J. Acoust. Soc. Amer., 119, 168181, doi:10.1121/1.2130961.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. H., 1983: Wind-generated noise modeling. J. Acoust. Soc. Amer., 73, 211216, doi:10.1121/1.388841.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 67 6
PDF Downloads 53 53 3

Wind Sea behind a Cold Front and Deep Ocean Acoustics

View More View Less
  • 1 Del Mar, California
  • | 2 Scripps Institution of Oceanography, La Jolla, California
  • | 3 European Centre for Medium-Range Weather Forecasting, Reading, United Kingdom
  • | 4 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A rapid and broadband (1 h, 1 < f < 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.

Denotes Open Access content.

Corresponding author address: W. E. Farrell, 13765 Durango Dr., Del Mar, CA 92014. E-mail: wef@farrell-family.org

Abstract

A rapid and broadband (1 h, 1 < f < 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.

Denotes Open Access content.

Corresponding author address: W. E. Farrell, 13765 Durango Dr., Del Mar, CA 92014. E-mail: wef@farrell-family.org
Save