• Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , P. Marchesiello, , and J. C. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, doi:10.1029/2004GL020123.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , F. Colas, , P. Penven, , P. Marchesiello, , and J. C. McWilliams, 2008a: Eddies in eastern boundary subtropical upwelling systems. Ocean Modeling in an Eddying Regime. Geophys. Monogr., Amer. Geophys. Union, 131–147, doi:10.1029/177GM10.

  • Capet, X., , J. McWilliams, , M. Molemaker, , and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Carr, M.-E., , and E. J. Kearns, 2003: Production regimes in four Eastern Boundary Current systems. Deep-Sea Res. II, 50, 31993221, doi:10.1016/j.dsr2.2003.07.015.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., , M. Le Texier, , G. Eldin, , C. Grados, , and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, doi:10.1029/2011JC007134.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, doi:10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. 104606, 51 pp. [Available online at http://ntrs.nasa.gov/search.jsp?R=19990060930.]

    • Search Google Scholar
    • Export Citation
  • Colas, F., , X. Capet, , J. C. McWilliams, , and Z. Li, 2013: Mesoscale eddy buoyancy flux and eddy-induced circulation in Eastern Boundary Currents. J. Phys. Oceanogr., 43, 10731095, doi:10.1175/JPO-D-11-0241.1.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., , and K. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575578, doi:10.1029/2000GL011487.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., , and L. Thompson, 2006: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys. Res. Lett., 33, L09604, doi:10.1029/2006GL025784.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., , P. Marchesiello, , P. Penven, , and G. Cambon, 2012: Two-way nesting in split–explicit ocean models: Algorithms, implementation and validation. Ocean Model., 49–50, 121, doi:10.1016/j.ocemod.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Desbiolles, F., , B. Blanke, , A. Bentamy, , and C. Roy, 2016: Response of the Southern Benguela upwelling system to fine-scale modifications of the coastal wind. J. Mar. Syst., 156, 4655, doi:10.1016/j.jmarsys.2015.12.002.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., , and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, doi:10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , P.-Y. Le Traon, , and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res., 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H., , and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, doi:10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., , A. M. Rogerson, , C. D. Winant, , and D. P. Rogers, 2001: Adjustment of the marine atmospheric boundary layer to a coastal cape. J. Atmos. Sci., 58, 15111528, doi:10.1175/1520-0469(2001)058<1511:AOTMAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • FAO, 2009: The state of world fisheries and aquaculture 2008. FAO Rep., 196 pp. [Available online at ftp://ftp.fao.org/docrep/fao/011/i0250e/i0250e.pdf.]

  • Gaube, P., , D. B. Chelton, , P. G. Strutton, , and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 63496370, doi:10.1002/2013JC009027.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., , D. B. Chelton, , R. M. Samelson, , M. G. Schlax, , and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, doi:10.1175/JPO-D-14-0032.1.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., , Z. Lachkar, , H. Frenzel, , P. Marchesiello, , M. Münnich, , J. C. McWilliams, , T. Nagai, , and G.-K. Plattner, 2011: Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci., 4, 787792, doi:10.1038/ngeo1273.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, doi:10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Jin, X., , C. Dong, , J. Kurian, , J. C. McWilliams, , D. B. Chelton, , and Z. Li, 2009: SST–wind interaction in coastal upwelling: Oceanic simulation with empirical coupling. J. Phys. Oceanogr., 39, 29572970, doi:10.1175/2009JPO4205.1.

    • Search Google Scholar
    • Export Citation
  • Jousse, A., , A. Hall, , F. Sun, , and J. Teixeira, 2016: Causes of WRF surface energy fluxes biases in a stratocumulus region. Climate Dyn., 46, 571584, doi:10.1007/s00382-015-2599-9.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., , F. Colas, , X. Capet, , J. C. McWilliams, , and D. B. Chelton, 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, doi:10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • Large, W. B., 2006: Surface fluxes for practitioners of global ocean data assimilation. Ocean Weather Forecasting. E. P. Chassignet and J. Verron, Eds., Springer, 229–270, doi:10.1007/1-4020-4028-8_9.

  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363404, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lathuilière, C., , V. Echevin, , M. Lévy, , and G. Madec, 2010: On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J. Geophys. Res., 115, C09018, doi:10.1029/2009JC005827.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., 2015: Numerical modification of atmospheric models to include the feedback of oceanic currents on air–sea fluxes in ocean–atmosphere coupled models. INRIA Grenoble - Rhône-Alpes Tech. Rep. RT-464, 10 pp. [Available online at https://hal.inria.fr/hal-01184711/document.]

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., , J. C. McWilliams, , and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., , J. C. McWilliams, , and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, doi:10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, A. P., , and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, doi:10.1016/S0967-0645(00)00096-5.

    • Search Google Scholar
    • Export Citation
  • Mason, E., , J. Molemaker, , A. F. Shchepetkin, , F. Colas, , J. C. McWilliams, , and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., 2015: Formation of intrathermocline lenses by eddy–wind interaction. J. Phys. Oceanogr., 45, 606612, doi:10.1175/JPO-D-14-0221.1.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and et al. , 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, doi:10.1126/science.1136256.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., , N. Gruber, , H. Frenzel, , Z. Lachkar, , J. C. McWilliams, , and G.-K. Plattner, 2015: Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J. Geophys. Res. Oceans, 120, 53185341, doi:10.1002/2015JC010889.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Oerder, V., , F. Colas, , V. Echevin, , S. Masson, , C. Hourdin, , S. Jullien, , G. Madec, , and F. Lemarié, 2016: Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability? Climate Dyn., doi:10.1007/s00382-015-2965-7, in press.

    • Search Google Scholar
    • Export Citation
  • Park, H., , D. Lee, , W.-P. Jeon, , S. Hahn, , J. Kim, , J. Kim, , J. Choi, , and H. Choi, 2006: Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device. J. Fluid Mech., 563, 389414, doi:10.1017/S0022112006001364.

    • Search Google Scholar
    • Export Citation
  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., , E. D. Skyllingstad, , R. M. Samelson, , and P. L. Barbour, 2007: Numerical simulation of air–sea coupling during coastal upwelling. J. Phys. Oceanogr., 37, 20812093, doi:10.1175/JPO3104.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., , E. D. Skyllingstad, , and R. M. Samelson, 2011: Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean–atmosphere model. Mon. Wea. Rev., 139, 809829, doi:10.1175/2010MWR3372.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., , B. Dewitte, , M. Falvey, , R. Garreaud, , V. Echevin, , and F. Bonjean, 2009: Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007). J. Geophys. Res., 114, C08006, doi:10.1029/2008JC005083.

    • Search Google Scholar
    • Export Citation
  • Renault, L., and et al. , 2012: Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event. J. Geophys. Res., 117, C02030, doi:10.1029/2011JC007446.

    • Search Google Scholar
    • Export Citation
  • Renault, L., , A. Hall, , and J. C. McWilliams, 2015: Orographic shaping of U.S. West Coast wind profiles during the upwelling season. Climate Dyn., 46, 273289, doi:10.1007/s00382-015-2583-4.

    • Search Google Scholar
    • Export Citation
  • Renault, L., , C. Deutsch, , J. C. McWilliams, , H. Frenzel, , J. H. Liang, , and F. Colas, 2016: Partial decoupling of primary productivity from upwelling in the California Current System. Nat. Geosci., in press.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., , M. Schlax, , and D. Chelton, 2014: Randomness, symmetry, and scaling of mesoscale eddy life cycles. J. Phys. Oceanogr., 44, 10121029, doi:10.1175/JPO-D-13-0161.1.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., , and W. H. Smith, 1997: Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res., 102, 10 039–10 054, doi:10.1029/96JB03223.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., , and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res. I, 56, 295304, doi:10.1016/j.dsr.2008.09.010.

    • Search Google Scholar
    • Export Citation
  • Seo, H., , A. J. Miller, , and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, doi:10.1175/JPO-D-15-0086.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, doi:10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., , J. Klemp, , J. Dudhia, , D. Gill, , and D. Barker, 2008: A description of the Advanced Research WRF version 3. NCAR. Tech. Note NCAR/TN-475+STR, doi:10.5065/D68S4MVH.

  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801, doi:10.1175/JCLI4234.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and R. X. Huang, 2004: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 12671275, doi:10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 64-164-3, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , Y. Wang, , and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 454 454 76
PDF Downloads 429 429 59

Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 INRIA, Université Grenoble-Alpes, CNRS, LJK, Grenoble, France
  • | 3 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 4 Laboratoire d’Étude en Géophysique et Océanographie Spatiale, IRD, Toulouse, France, and Department of Oceanography, MARE Institute, University of Cape Town, Rondebosch, South Africa
  • | 5 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, uncoupled and coupled ocean–atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean–atmosphere interactions, namely, the ocean surface current feedback to the atmosphere. The authors show the current feedback, by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic eddy kinetic energy (EKE). For the first time, it is demonstrated that the current feedback has an effect on the surface stress and a counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the nearshore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly reenergizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, the authors propose an additional energy element in the Lorenz diagram of energy conversion: namely, the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale.

Corresponding author address: Lionel Renault, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: lrenault@atmos.ucla.edu

Abstract

In this study, uncoupled and coupled ocean–atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean–atmosphere interactions, namely, the ocean surface current feedback to the atmosphere. The authors show the current feedback, by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic eddy kinetic energy (EKE). For the first time, it is demonstrated that the current feedback has an effect on the surface stress and a counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the nearshore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly reenergizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, the authors propose an additional energy element in the Lorenz diagram of energy conversion: namely, the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale.

Corresponding author address: Lionel Renault, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: lrenault@atmos.ucla.edu
Save