• Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., , G. R. Foltz, , and M. J. McPhaden, 2012: Characteristics of the seasonal cycle of surface layer salinity in the global ocean. Ocean Sci., 8, 915929, doi:10.5194/os-8-915-2012.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., , J. Busecke, , A. L. Gordon, , C. F. Giulivi, , and Z. Li, 2014: The North Atlantic subtropical surface salinity maximum as observed by Aquarius. J. Geophys. Res. Oceans, 119, 77417755, doi:10.1002/2014JC009825.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , M. Arhan, , A. Lazar, , J. Mignot, , and G. Prévost, 2002: A Lagrangian numerical investigation of the origins and fates of the salinity maximum water in the Atlantic. J. Geophys. Res., 107, 3163, doi:10.1029/2002JC001318.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , S. Levitus, , J. Antonov, , R. Locarnini, , and H. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Burkholder, K. C., , and M. S. Lozier, 2011: Subtropical to subpolar pathways in the North Atlantic: Deductions from Lagrangian trajectories. J. Geophys. Res., 116, C07017, doi:10.1029/2010JC006697.

    • Search Google Scholar
    • Export Citation
  • Busecke, J., , Z. Li, , F. M. Bingham, , A. L. Gordon, , and J. Font, 2014: Mesoscale turbulence within the subtropical North Atlantic surface layer. J. Geophys. Res. Oceans, 119, 41244140, doi:10.1002/2013JC009715.

    • Search Google Scholar
    • Export Citation
  • Chen, J., , T. Qu, , Y. Sasaki, , and N. Schneider, 2010: Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans as seen from an eddy-resolving ocean GCM. Geophys. Res. Lett., 37, L23608, doi:10.1029/2010GL045239.

    • Search Google Scholar
    • Export Citation
  • D’Addezio, J. M., , and F. M. Bingham, 2014: A subtropical North Atlantic regional atmospheric moisture budget. J. Geophys. Res. Oceans, 119, 87318748, doi:10.1002/2014JC010300.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., , J. R. Toggweiler, , and D. M. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38, 435450, doi:10.1175/2007JPO3731.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durack, P., , and S. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , J. C. H. Chiang, , M. A. Cane, , Y. Kushnir, , and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, doi:10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gordon, A., , and C. F. Giulivi, 2008: Sea surface salinity trends. Oceanography, 21, 2029, doi:10.5670/oceanog.2008.64.

  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1999: Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993. J. Geophys. Res., 104, 10 99111 008, doi:10.1029/1999JC900034.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hormann, V., , L. R. Centurioni, , and G. Reverdin, 2015: Evaluation of drifter salinities in the subtropical North Atlantic. J. Atmos. Oceanic Technol., 32, 185192, doi:10.1175/JTECH-D-14-00179.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437371, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., , and D. Quadfasel, 2002: Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res. II, 49, 14411457, doi:10.1016/S0967-0645(01)00160-6.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., , N. Schneider, , and E. Di Lorenzo, 2011: Generation of low-frequency spiciness variability in the thermocline. J. Phys. Oceanogr., 41, 365377, doi:10.1175/2010JPO4443.1.

    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., , and F. Gaillard, 2012: Observation of spiciness interannual variability in the Pacific pycnocline. J. Geophys. Res., 117, C12018, doi:10.1029/2012JC008365.

    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., , G. Reverdin, , and A. Lazar, 2015: Interannual variability of the mixed layer winter convection and spice injection in the eastern subtropical North Atlantic. J. Phys. Oceanogr., 45, 504525, doi:10.1175/JPO-D-14-0042.1.

    • Search Google Scholar
    • Export Citation
  • Laurian, A., , A. Lazar, , G. Reverdin, , K. Rodgers, , and P. Terray, 2006: Poleward propagation of spiciness anomalies in the North Atlantic Ocean. Geophys. Res. Lett., 33, L13603, doi:10.1029/2006GL026155.

    • Search Google Scholar
    • Export Citation
  • Laurian, A., , A. Lazar, , and G. Reverdin, 2009: Generation mechanism of spiciness anomalies: An OGCM analysis in the North Atlantic Subtropical Gyre. J. Phys. Oceanogr., 39, 10031018, doi:10.1175/2008JPO3896.1.

    • Search Google Scholar
    • Export Citation
  • Lazar, A., , R. Murtugudde, , and A. J. Busalacchi, 2001: A model study of temperature anomaly propagation from subtropics to tropics within the South Atlantic thermocline. Geophys. Res. Lett., 28, 12711274, doi:10.1029/2000GL011418.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Liu, L. L., , and R. X. Huang, 2012: The global subduction/obduction rates: Their interannual and decadal variability. J. Climate, 25, 10961115, doi:10.1175/2011JCLI4228.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , L. M. Rothstein, , R.-H. Zhang, , and A. J. Busalacchi, 2005: On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model. J. Geophys. Res., 110, C10002, doi:10.1029/2004JC002655.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., , and C. Frankignoul, 2004: Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model. J. Geophys. Res., 109, C04005, doi:10.1029/2003JC002005.

    • Search Google Scholar
    • Export Citation
  • Niiler, P., 1975: Deepening of the wind-mixed layer. J. Mar. Res., 33, 405422.

  • O’Connor, B. M., , R. A. Fine, , and D. B. Olson, 2005: A global comparison of subtropical underwater formation rate. Deep-Sea Res., 52, 15691590, doi:10.1016/j.dsr.2005.01.011.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 23742390, doi:10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., , and J. Chen, 2009: A North Pacific decadal variability in subduction rate. Geophys. Res. Lett., 36, L22602, doi:10.1029/2009GL040914.

    • Search Google Scholar
    • Export Citation
  • Qu, T., , H. Mitsudera, , and T. Yamagata, 1999: A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29, 14881505, doi:10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., , S. Gao, , and I. Fukumori, 2011: What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602, doi:10.1029/2011GL046757.

    • Search Google Scholar
    • Export Citation
  • Qu, T., , S. Gao, , and I. Fukumori, 2013: Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J. Geophys. Res. Oceans, 118, 19821994, doi:10.1002/jgrc.20152.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., , E. Kestenare, , C. Frankignoul, , and T. Delcroix, 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73, 311340, doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1983: A practical indicator of stability of the water column to double-diffusive activity. Deep-Sea Res., 30A, 11051107, doi:10.1016/0198-0149(83)90063-8.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., , N. Schneider, , N. Maximenko, , and K. Lebedev, 2010: Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett., 37, L07708, doi:10.1029/2010GL042716.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1981: Form of the temperature-salinity relationship in the Central Water: Evidence for double-diffusive mixing. J. Phys. Oceanogr., 11, 10151026, doi:10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1999: Spice and the demon. Science, 283, 498499, doi:10.1126/science.283.5401.498.

  • Schneider, N., 2004: The response of tropical climate to the equatorial emergence of spiciness anomalies. J. Climate, 17, 10831095, doi:10.1175/1520-0442(2004)017<1083:TROTCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., , A. J. Miller, , M. A. Alexander, , and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 10561070, doi:10.1175/1520-0485(1999)029<1056:SODNPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F., and et al. , 2003: The zonal currents and transports at 35°W in the tropical Atlantic. Geophys. Res. Lett., 30, 1349, doi:10.1029/2002GL016849.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, doi:10.1073/pnas.76.7.3051.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3, 990998, doi:10.1175/1520-0442(1990)003<0990:SPOAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , S. Dong, , and E. Munoz, 2010: Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Climate Dyn., 34, 953968, doi:10.1007/s00382-009-0560-5.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., 1991: The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21, 18031814, doi:10.1175/1520-0485(1991)021<1803:TROTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1985: The physics of pycnocline ventilation. Coupled Ocean-Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 543–590.

  • Worthington, L. V., 1976: On the North Atlantic Circulation. Johns Hopkins University Press, 110 pp.

  • Yeager, S. G., , and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34, 15281547, doi:10.1175/1520-0485(2004)034<1528:LGOSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , and W. G. Large, 2007: Observational evidence of winter spice injection. J. Phys. Oceanogr., 37, 28952919, doi:10.1175/2007JPO3629.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., , M. J. McPhaden, , and W. E. Johns, 2003: Observational evidence for flow between the subtropical and tropical Atlantic: The Atlantic subtropical cells. J. Phys. Oceanogr., 33, 17831797, doi:10.1175/2408.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and T. Qu, 2014: Low-frequency variability of South Pacific Tropical Water from Argo. Geophys. Res. Lett., 41, 24412446, doi:10.1002/2014GL059490.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 9
PDF Downloads 101 101 9

North Atlantic Subtropical Underwater and Its Year-to-Year Variability in Annual Subduction Rate during the Argo Period

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
  • | 2 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Subtropical underwater (STUW) and its year-to-year variability in annual subduction rate are investigated using recently available Argo data in the North Atlantic. For the period of observation (2002–14), the mean annual subduction rate of the STUW is 7.3 ± 1.2 Sv (1 Sv = 106 m3 s−1) within the density range between 25.0 and 26.0 kg m−3. Once subducted, the STUW spreads in the subtropical gyre as a vertical salinity maximum. In the mean, the spatial changes in temperature and salinity of the STUW tend to compensate each other, and the density of the water mass remains rather stable near 25.5 kg m−3 in the southwestern part of the subtropical gyre. The annual subduction rate of the STUW varies from year to year, and most of this variability is due to lateral induction, which in turn is directly linked to the variability of the winter mixed layer depth. Through modulation of surface buoyancy, wind anomalies associated with the North Atlantic Oscillation are primarily responsible for this variability. Sea surface salinity anomalies in the formation region of the STUW are conveyed into the thermocline, but their westward propagation cannot be detected by the present data.

School of Ocean and Earth Science and Technology Contribution Number 9607 and International Pacific Research Center Contribution Number IPRC-1183.

Corresponding author address: Dr. Tangdong Qu, Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095. E-mail: tangdong@ucla.edu

Abstract

Subtropical underwater (STUW) and its year-to-year variability in annual subduction rate are investigated using recently available Argo data in the North Atlantic. For the period of observation (2002–14), the mean annual subduction rate of the STUW is 7.3 ± 1.2 Sv (1 Sv = 106 m3 s−1) within the density range between 25.0 and 26.0 kg m−3. Once subducted, the STUW spreads in the subtropical gyre as a vertical salinity maximum. In the mean, the spatial changes in temperature and salinity of the STUW tend to compensate each other, and the density of the water mass remains rather stable near 25.5 kg m−3 in the southwestern part of the subtropical gyre. The annual subduction rate of the STUW varies from year to year, and most of this variability is due to lateral induction, which in turn is directly linked to the variability of the winter mixed layer depth. Through modulation of surface buoyancy, wind anomalies associated with the North Atlantic Oscillation are primarily responsible for this variability. Sea surface salinity anomalies in the formation region of the STUW are conveyed into the thermocline, but their westward propagation cannot be detected by the present data.

School of Ocean and Earth Science and Technology Contribution Number 9607 and International Pacific Research Center Contribution Number IPRC-1183.

Corresponding author address: Dr. Tangdong Qu, Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095. E-mail: tangdong@ucla.edu
Save