Spontaneous Wave Generation at Strongly Strained Density Fronts

Callum J. Shakespeare Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Callum J. Shakespeare in
Current site
Google Scholar
PubMed
Close
and
John R. Taylor Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple analytical model is presented describing the spontaneous generation of inertia–gravity waves at density fronts subjected to strong horizontal strain rates. The model considers fronts of arbitrary horizontal and vertical structure in a semi-infinite domain, with a single boundary at the ocean surface. Waves are generated because of the acceleration of the steady uniform strain flow around the density front, analogous to the generation of lee waves via flow over a topographic ridge. Significant wave generation only occurs for sufficiently strong strain rates α > 0.2f and sharp fronts H/L > 0.5f/N, where f is the Coriolis parameter, N is the stratification, and H and L are the height and width scales of the front, respectively. The frequencies of the generated waves are entirely determined by the strain rate. The lowest-frequency wave predicted to be generated via this mechanism has a Lagrangian frequency ω = 1.93f as measured in a reference frame moving with the background strain flow. The model is intended as a first-order description of wave generation at submesoscale (1 to 10 km wide) fronts where large strain rates are commonplace. The analytical model compares well with fully nonlinear numerical simulations of the submesoscale regime.

Corresponding author address: John R. Taylor, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. E-mail: j.r.taylor@damtp.cam.ac.uk

Abstract

A simple analytical model is presented describing the spontaneous generation of inertia–gravity waves at density fronts subjected to strong horizontal strain rates. The model considers fronts of arbitrary horizontal and vertical structure in a semi-infinite domain, with a single boundary at the ocean surface. Waves are generated because of the acceleration of the steady uniform strain flow around the density front, analogous to the generation of lee waves via flow over a topographic ridge. Significant wave generation only occurs for sufficiently strong strain rates α > 0.2f and sharp fronts H/L > 0.5f/N, where f is the Coriolis parameter, N is the stratification, and H and L are the height and width scales of the front, respectively. The frequencies of the generated waves are entirely determined by the strain rate. The lowest-frequency wave predicted to be generated via this mechanism has a Lagrangian frequency ω = 1.93f as measured in a reference frame moving with the background strain flow. The model is intended as a first-order description of wave generation at submesoscale (1 to 10 km wide) fronts where large strain rates are commonplace. The analytical model compares well with fully nonlinear numerical simulations of the submesoscale regime.

Corresponding author address: John R. Taylor, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. E-mail: j.r.taylor@damtp.cam.ac.uk
Save
  • Alford, M. H., A. Y. Shcherbina, and M. C. Gregg, 2013: Observations of near-inertial internal gravity waves radiating from a frontal jet. J. Phys. Oceanogr., 43, 12251239, doi:10.1175/JPO-D-12-0146.1.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 2000: Inertial oscillations and frontogenesis in a zero potential vorticity model. J. Phys. Oceanogr., 30, 3139, doi:10.1175/1520-0485(2000)030<0031:IOAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, doi:10.1017/S0022112067000515.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, P. Klein, and H. Sasaki, 2012: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech., 699, 153173, doi:10.1017/jfm.2012.90.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, doi:10.1017/S0022112094002946.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, doi:10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174, doi:10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P. J., M. C. Gregg, and M. H. Alford, 2013: Wind-driven submesoscale subduction at the North Pacific subtropical front. J. Geophys. Res. Oceans, 118, 53335352, doi:10.1002/jgrc.20385.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2010: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci., 67, 157170, doi:10.1175/2009JAS3134.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2012: Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci., 69, 21342151, doi:10.1175/JAS-D-11-0296.1.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of the mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Muraki, D. J., 2011: Large-amplitude topographic waves in 2D stratified flow. J. Fluid Mech., 681, 173192, doi:10.1017/jfm.2011.187.

  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of near-inertial waves by the Kuroshio Front. J. Phys. Oceanogr., 45, 23812406, doi:10.1175/JPO-D-14-0086.1.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1984: Linear results on the barrier effects of mesoscale mountains. J. Atmos. Sci., 41, 13561367, doi:10.1175/1520-0469(1984)041<1356:LROTBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, doi:10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1947: Theory of Perturbations in Stratified Currents with Applications to Air Flow over Mountain Barriers. University of Chicago Press, 81 pp.

  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122, 11751195, doi:10.1002/qj.49712253308.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. Part II. J. Mar. Res., 1, 239263, doi:10.1357/002224038806440520.

    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. M. Hogg, A. E. Kiss, and B. Gayen, 2015: Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett., 42, 11391147, doi:10.1002/2014GL062720.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and J. R. Luyten, 1996: Intensive surveys of the Azores Front: 1. Tracers and dynamics. J. Geophys. Res., 101, 923939, doi:10.1029/95JC02867.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2015: On the generation of waves during frontogenesis. University of Cambridge, Ph.D. dissertation, 221 pp.

  • Shakespeare, C. J., 2016: Nonhydrostatic wave generation at strained fronts. J. Atmos. Sci., doi:10.1175/JAS-D-14-0294.1, in press.

  • Shakespeare, C. J., and J. R. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: Uniform potential vorticity. J. Fluid Mech., 736, 366413, doi:10.1017/jfm.2013.526.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2014: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Theory. J. Fluid Mech., 757, 817853, doi:10.1017/jfm.2014.514.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2015: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Numerical solutions. J. Fluid Mech., 772, 508534, doi:10.1017/jfm.2015.197.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620640, doi:10.1017/jfm.2012.416.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, doi:10.1146/annurev-fluid-011212-140730.

    • Search Google Scholar
    • Export Citation
  • Viudez, A., and D. G. Dritschel, 2006: Spontaneous generation of inertia–gravity wave packets by balanced geophysical flows. J. Fluid Mech., 553, 107117, doi:10.1017/S0022112005008311.

    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, doi:10.1175/JPO-D-12-0132.1.

    • Search Google Scholar
    • Export Citation
  • Williams, R. T., and J. Plotkin, 1968: Quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 201206, doi:10.1175/1520-0469(1968)025<0201:QGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 85 11
PDF Downloads 198 59 9