Optimal Initial Excitations of Decadal Modification of the Atlantic Meridional Overturning Circulation under the Prescribed Heat and Freshwater Flux Boundary Conditions

Ziqing Zu Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing, China

Search for other papers by Ziqing Zu in
Current site
Google Scholar
PubMed
Close
,
Mu Mu Key Laboratory of Ocean Circulation and Wave, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Mu Mu in
Current site
Google Scholar
PubMed
Close
, and
Henk A. Dijkstra Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

Search for other papers by Henk A. Dijkstra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Within a three-dimensional ocean circulation model, the nonlinear optimal initial perturbations (NOIP) of sea surface salinity (SSS) and sea surface temperature (SST) to excite variability in the Atlantic meridional overturning circulation (AMOC) were obtained under prescribed heat and freshwater flux boundary conditions, using the conditional nonlinear optimal perturbation (CNOP) method. After 10 years, the optimal SSS and SST perturbations lead to reductions of the AMOC by 3.6 and 2.5 Sv (1 Sv = 106 m3 s−1), respectively, followed by multidecadal oscillations with a period of about 50 years. During the first 30 years, nonlinear processes have an important influence on the AMOC strength: convection strengthens the AMOC during years 0–2, zonal density advection promotes the slowdown of the AMOC during years 7–20, and meridional density advection inhibits the slowdown of meridional velocities in the upper ocean during years 5–18. The linear optimal initial perturbation (LOIP) was also computed using the first singular vector (FSV) method. For SSS perturbations with an amplitude of 0.5 psu, the LOIP will cause an underestimation of the amplitude of the multidecadal AMOC variability by about 1 Sv, compared to that induced by the NOIP. This underestimation will become more significant as the amplitudes of SSS perturbations increase.

Denotes Open Access content.

Corresponding author address: Mu Mu, Key Laboratory of Ocean Circulation and Wave, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China. E-mail: mumu@qdio.ac.cn.

Abstract

Within a three-dimensional ocean circulation model, the nonlinear optimal initial perturbations (NOIP) of sea surface salinity (SSS) and sea surface temperature (SST) to excite variability in the Atlantic meridional overturning circulation (AMOC) were obtained under prescribed heat and freshwater flux boundary conditions, using the conditional nonlinear optimal perturbation (CNOP) method. After 10 years, the optimal SSS and SST perturbations lead to reductions of the AMOC by 3.6 and 2.5 Sv (1 Sv = 106 m3 s−1), respectively, followed by multidecadal oscillations with a period of about 50 years. During the first 30 years, nonlinear processes have an important influence on the AMOC strength: convection strengthens the AMOC during years 0–2, zonal density advection promotes the slowdown of the AMOC during years 7–20, and meridional density advection inhibits the slowdown of meridional velocities in the upper ocean during years 5–18. The linear optimal initial perturbation (LOIP) was also computed using the first singular vector (FSV) method. For SSS perturbations with an amplitude of 0.5 psu, the LOIP will cause an underestimation of the amplitude of the multidecadal AMOC variability by about 1 Sv, compared to that induced by the NOIP. This underestimation will become more significant as the amplitudes of SSS perturbations increase.

Denotes Open Access content.

Corresponding author address: Mu Mu, Key Laboratory of Ocean Circulation and Wave, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China. E-mail: mumu@qdio.ac.cn.
Save
  • Alexander, J., and A. H. Monahan, 2009: Nonnormal perturbation growth of pure thermohaline circulation using a 2D zonally averaged model. J. Phys. Oceanogr., 39, 369386, doi:10.1175/2008JPO3847.1.

    • Search Google Scholar
    • Export Citation
  • Avsic, T., J. Karstensen, U. Send, and J. Fischer, 2006: Interannual variability of newly formed Labrador Sea Water from 1994 to 2005. Geophys. Res. Lett., 33, L21S02, doi:10.1029/2006GL026913.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S. A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168, doi:10.1016/S0079-6611(98)00015-9.

    • Search Google Scholar
    • Export Citation
  • Birgin, E. G., J. M. Martínez, and M. Raydan, 2000: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10, 11961211, doi:10.1137/S1052623497330963.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr., 25, 25472568, doi:10.1175/1520-0485(1995)025<2547:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, doi:10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and Coauthors, 2007: Temporal variability of the Atlantic Meridional Overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1995: North Atlantic interdecadal variability in a coupled model. Natural Climate Variability on Decade-to-Century Time Scales, National Academies Press, 432–439.

  • de Niet, A., F. Wubs, A. T. van Scheltinga, and H. A. Dijkstra, 2007: A tailored solver for bifurcation analysis of ocean-climate models. J. Comput. Phys., 227, 654679, doi:10.1016/j.jcp.2007.08.006.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2007: Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695705, doi:10.1111/j.1600-0870.2007.00267.x.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2013: Nonlinear Climate Dynamics. Cambridge University Press, 367 pp.

  • Dijkstra, H. A., H. Oksuzoglu, F. W. Wubs, and E. F. F. Botta, 2001: A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comput. Phys., 173, 685715, doi:10.1006/jcph.2001.6908.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., L. T. Raa, M. Schmeits, and J. Gerrits, 2006: On the physics of the Atlantic multidecadal oscillation. Ocean Dyn., 56, 3650, doi:10.1007/s10236-005-0043-0.

    • Search Google Scholar
    • Export Citation
  • Duan, W., and M. Mu, 2006: Investigating decadal variability of El Nino–Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111, C07015, doi:10.1029/2005JC003458.

    • Search Google Scholar
    • Export Citation
  • Duan, W., and M. Mu, 2009: Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability. Sci. China, 52D, 883906, doi:10.1007/s11430-009-0090-3.

    • Search Google Scholar
    • Export Citation
  • Duan, W., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Nino–Southern Oscillation events. J. Geophys. Res., 109, D23105, doi:10.1029/2004JD004756.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691, doi:10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996: Generalized stability theory-I: Autonomous operators. J. Atmos. Sci., 53, 20252040, doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E. D., and R. Sutton, 2009: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 39603978, doi:10.1175/2009JCLI2720.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and J. K. Willis, 2012: Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data. J. Geophys. Res., 117, C01008, doi:10.1029/2011JC007039.

    • Search Google Scholar
    • Export Citation
  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A, 526545, doi:10.1111/j.1600-0870.2001.00526.x.

    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., M. den Toom, H. A. Dijkstra, and S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic Meridional Overturning Circulation. J. Phys. Oceanogr., 40, 551567, doi:10.1175/2009JPO4215.1.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031, doi:10.1175/JCLI3462.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, M. Saunby, and D. E. Parker, 2011: Reassessing biases and other uncertainties in sea-surface temperature observations since 1850: 1. Measurement and sampling errors. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kerswell, R. R., C. C. T. Pringle, and A. P. Willis, 2014: An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys., 77, 085901, doi:10.1088/0034-4885/77/8/085901.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1997: Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas Event. Paleoceanography, 12, 321336, doi:10.1029/96PA03932.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. Alexander, and A. J. Weaver, 2008: Stochastic models of the meridional overturning circulation: time scales and patterns of variability. Philos. Trans. Roy. Soc., 366A, 25252542, doi:10.1098/rsta.2008.0045.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, doi:10.5194/npg-10-493-2003.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 34, 23052315, doi:10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, H. Xu, and B. Wang, 2006: Applications of conditional nonlinear optimal perturbation in predictability study and sensitivity analysis of weather and climate. Adv. Atmos. Sci., 23, 9921002, doi:10.1007/s00376-006-0992-3.

    • Search Google Scholar
    • Export Citation
  • Mu, M., H. Xu, and W. Duan, 2007: A kind of initial errors related to “spring predictability barrier” for El Nino events in Zebiak-Cane model. Geophys. Res. Lett., 34, L03709, doi:10.1029/2006GL027412.

    • Search Google Scholar
    • Export Citation
  • Mu, M., F. Zhou, and H. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 16231639, doi:10.1175/2008MWR2640.1.

    • Search Google Scholar
    • Export Citation
  • Qin, X. H., and M. Mu, 2012: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185197, doi:10.1002/qj.902.

    • Search Google Scholar
    • Export Citation
  • Robson, J., D. Hodson, E. Hawkins, and R. Sutton, 2014: Atlantic overturning in decline? Nat. Geosci., 7, 23, doi:10.1038/ngeo2050.

  • Sévellec, F., and A. V. Fedorov, 2015: Optimal excitation of AMOC decadal variability: links to the subpolar ocean. Prog. Oceanogr., 132, 287304, doi:10.1016/j.pocean.2014.02.006.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, M. Ben Jelloul, and J. Vialard, 2009: Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J. Phys. Oceanogr., 39, 852872, doi:10.1175/2008JPO3998.1.

    • Search Google Scholar
    • Export Citation
  • Sun, G., and M. Mu, 2011: Response of a grassland ecosystem to climate change in a theoretical model. Adv. Atmos. Sci., 28, 12661278, doi:10.1007/s00376-011-0169-6.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Mu, D. J. Sun, and X. Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi:10.1029/2005JC002897.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138160, doi:10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and G. Lohmann, 2000: Noise-induced transitions in a simplified model of the thermohaline circulation. J. Phys. Oceanogr., 30, 18911900, doi:10.1175/1520-0485(2000)030<1891:NITIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, and R. Voss, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11, 19061931, doi:10.1175/1520-0442-11.8.1906.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32, 34273435, doi:10.1175/1520-0485(2002)032<3427:TGAOEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, and E. Munoz, 2010: Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Climate Dyn., 34, 953968, doi:10.1007/s00382-009-0560-5.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Mu, and H. A. Dijkstra, 2012: Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci., 29, 118134, doi:10.1007/s00376-011-0199-0.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Mu, and H. A. Dijkstra, 2013: The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res. Oceans, 118, 869884, doi:10.1002/jgrc.20084.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Li, and D. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res., 114, D02112, doi:10.1029/2008JD010929.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., P. Heimbach, A. M. Moore, and E. Tziperman, 2012: Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quart. J. Roy. Meteor. Soc., 138, 500513, doi:10.1002/qj.937.

    • Search Google Scholar
    • Export Citation
  • Zu, Z., M. Mu, and H. A. Dijkstra, 2013: Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation. Chin. J. Oceanol. Limnol., 31, 13681374, doi:10.1007/s00343-014-3051-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 59 12
PDF Downloads 86 33 7