Intraseasonal Cross-Shelf Variability of Hypoxia along the Newport, Oregon, Hydrographic Line

Katherine A. Adams School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom

Search for other papers by Katherine A. Adams in
Current site
Google Scholar
PubMed
Close
,
John A. Barth College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by John A. Barth in
Current site
Google Scholar
PubMed
Close
, and
R. Kipp Shearman College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by R. Kipp Shearman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of hypoxia, dissolved oxygen (DO) concentrations < 1.4 ml L−1, off the central Oregon coast vary in duration and spatial extent throughout each upwelling season. Underwater glider measurements along the Newport hydrographic line (NH-Line) reveal cross-shelf DO gradients at a horizontal resolution nearly 30 times greater than previous ship-based station sampling. Two prevalent hypoxic locations are identified along the NH-Line, as is a midshelf region with less severe hypoxia north of Stonewall Bank. Intraseasonal cross-shelf variability is investigated with 10 sequential glider lines and a midshelf mooring time series during the 2011 upwelling season. The cross-sectional area of hypoxia observed in the glider lines ranges from 0 to 1.41 km2. The vertical extent of hypoxia in the water column agrees well with the bottom mixed layer height. Midshelf mooring water velocities show that cross-shelf advection cannot account for the increase in outer-shelf hypoxia observed in the glider sequence. This change is attributed to an along-shelf DO gradient of −0.72 ml L−1 over 2.58 km or 0.28 ml L−1 km−1. In early July of the 2011 upwelling season, near-bottom cross-shelf currents reverse direction as an onshore flow at 30-m depth is observed. This shoaling of the return flow depth throughout the season, as the equatorward coastal jet moves offshore, results in a more retentive near-bottom environment more vulnerable to hypoxia. Slope Burger numbers calculated across the season do not reconcile this return flow depth change, providing evidence that simplified two-dimensional upwelling model assumptions do not hold in this location.

Corresponding author address: Katherine Adams, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, PL4 8AA United Kingdom. E-mail: kate.adams@plymouth.ac.uk

Abstract

Observations of hypoxia, dissolved oxygen (DO) concentrations < 1.4 ml L−1, off the central Oregon coast vary in duration and spatial extent throughout each upwelling season. Underwater glider measurements along the Newport hydrographic line (NH-Line) reveal cross-shelf DO gradients at a horizontal resolution nearly 30 times greater than previous ship-based station sampling. Two prevalent hypoxic locations are identified along the NH-Line, as is a midshelf region with less severe hypoxia north of Stonewall Bank. Intraseasonal cross-shelf variability is investigated with 10 sequential glider lines and a midshelf mooring time series during the 2011 upwelling season. The cross-sectional area of hypoxia observed in the glider lines ranges from 0 to 1.41 km2. The vertical extent of hypoxia in the water column agrees well with the bottom mixed layer height. Midshelf mooring water velocities show that cross-shelf advection cannot account for the increase in outer-shelf hypoxia observed in the glider sequence. This change is attributed to an along-shelf DO gradient of −0.72 ml L−1 over 2.58 km or 0.28 ml L−1 km−1. In early July of the 2011 upwelling season, near-bottom cross-shelf currents reverse direction as an onshore flow at 30-m depth is observed. This shoaling of the return flow depth throughout the season, as the equatorward coastal jet moves offshore, results in a more retentive near-bottom environment more vulnerable to hypoxia. Slope Burger numbers calculated across the season do not reconcile this return flow depth change, providing evidence that simplified two-dimensional upwelling model assumptions do not hold in this location.

Corresponding author address: Katherine Adams, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, PL4 8AA United Kingdom. E-mail: kate.adams@plymouth.ac.uk
Save
  • Adams, K. A., J. A. Barth, and F. Chan, 2013: Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon. J. Geophys. Res. Oceans, 118, 48394854, doi:10.1002/jgrc.20361.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., S. D. Pierce, and R. M. Castelao, 2005: Time dependent, wind-driven flow over a shallow mid shelf submarine bank. J. Geophys. Res., 110, C10S05, doi:10.1029/2004JC002761.

    • Search Google Scholar
    • Export Citation
  • Boyd, T., M. D. Levine, P. M. Kosro, S. R. Gard, and W. Waldorf, 2002: Observations from Moorings on the Oregon Continental Shelf, May-August 2001: A component of Coastal Advances in Shelf Transport (COAST). COAS Data Rep. 190, Reference 2002-6, 124 pp.

  • Castelao, R. M., and J. A. Barth, 2005: Coastal ocean response to summer upwelling favorable winds in a region of alongshore bottom topography variations off Oregon. J. Geophys. Res., 110, C10S04, doi:10.1029/2004JC002409.

    • Search Google Scholar
    • Export Citation
  • Chan, F., J. A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W. T. Peterson, and B. A. Menge, 2008: Emergence of anoxia in the California Current large marine ecosystem. Science, 319, 920, doi:10.1126/science.1149016.

    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, S. L. Geier, and W. P. Cochlan, 2010: Processes influencing seasonal hypoxia in the northern California Current System. J. Geophys. Res., 115, C03021, doi:10.1029/2009JC005283.

    • Search Google Scholar
    • Export Citation
  • Diaz, R. J., and J. Rosenberg, 1995: Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol., 33, 245303.

    • Search Google Scholar
    • Export Citation
  • Diaz, R. J., and R. Rosenberg, 2008: Spreading dead zones and consequences for marine ecosystems. Science, 321, 926929, doi:10.1126/science.1156401.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Garau, B., S. Ruiz, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintore, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, doi:10.1175/JTECH-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323.

    • Search Google Scholar
    • Export Citation
  • Grantham, B. A., F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco, and B. A. Menge, 2004: Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749754, doi:10.1038/nature02605.

    • Search Google Scholar
    • Export Citation
  • Gray, J. S., R. S. Wu, and Y. Y. Or, 2002: Effects of hypoxia and organic enrichment on the marine environment. Mar. Ecol. Prog. Ser., 238, 249279, doi:10.3354/meps238249.

    • Search Google Scholar
    • Export Citation
  • Hales, B., L. Karp-Boss, A. Perlin, and P. A. Wheeler, 2006: Oxygen production and carbon sequestration in an upwelling coastal margin. Global Biogeochem. Cycles, 20, GB3001, doi:10.1029/2005GB002517.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., 1976: A comparison of upwelling events in two locations: Oregon and Northwest Africa. J. Mar. Res., 34, 531546.

  • Huyer, A., E. J. C. Sobey, and R. L. Smith, 1979: The spring transition in currents over the Oregon continental shelf. J. Geophys. Res., 84, 69957011, doi:10.1029/JC084iC11p06995.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., J. H. Fleischbein, J. Keister, P. M. Kosro, N. Perlin, R. L. Smith, and P. A. Wheeler, 2005: Two coastal upwelling domains in the northern California Current System. J. Mar. Res., 63, 901929, doi:10.1357/002224005774464238.

    • Search Google Scholar
    • Export Citation
  • Keller, A. A., V. Simon, F. Chan, W. W. Wakefield, M. E. Clarke, J. A. Barth, D. Kamikawa, and E. L. Fruh, 2010: Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast. Fish. Oceanogr., 19, 7687, doi:10.1111/j.1365-2419.2009.00529.x.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 24442457, doi:10.1175/JPO2644.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., B. M. Hickey, E. D. Dever, and P. MacCready, 2015: Seasonal cross-shelf flow structure, upwelling relaxation, and the along-shelf pressure gradient in the northern California Current System. J. Phys. Oceanogr., 45, 209227, doi:10.1175/JPO-D-14-0025.1.

    • Search Google Scholar
    • Export Citation
  • Merckelbach, L. M., R. D. Briggs, D. A. Smeed, and G. Griffiths, 2008: Current measurements from autonomous underwater gliders. IEEE/OES Ninth Working Conf. on Current Measurement Technology, Charleston, SC, IEEE, 61–67, doi:10.1109/CCM.2008.4480845.

  • Nash, J. D., and J. N. Moum, 2001: Internal hydraulic flows on the continental shelf: High drag states over a small bank. J. Geophys. Res., 106, 45934611, doi:10.1029/1999JC000183.

    • Search Google Scholar
    • Export Citation
  • Ordonez, C., 2012: Absolute Water Velocity Profiles from Glider-mounted Acoustic Doppler Current Profilers. M.S. thesis, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, 60 pp.

  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, doi:10.1175/JPO-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, A., J. N. Moum, and J. M. Klymak, 2005: Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind. J. Geophys. Res., 110, C10S09, doi:10.1029/2004JC002500.

    • Search Google Scholar
    • Export Citation
  • Peterson, J. O., C. A. Morgan, W. T. Peterson, and E. Di Lorenzo, 2013: Seasonal and Interannual variation in the extent of hypoxia in the northern California Current from 1998 – 2012. Limnol. Oceanogr., 58, 22792292, doi:10.4319/lo.2013.58.6.2279.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. P., J. A. Barth, R. E. Thomas, and G. W. Fleischer, 2006: Anomalously warm July 2005 in the northern California Current: Historical context and significance of cumulative wind stress. Geophys. Res. Lett., 33, L22S04, doi:10.1029/2006GL027149.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. P., J. A. Barth, R. K. Shearman, and A. Y. Erofeev, 2012: Declining oxygen in the northeast Pacific. J. Phys. Oceanogr., 42, 495501, doi:10.1175/JPO-D-11-0170.1.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., and A. W. Mantyla, 1976: The effect of the geostrophic flow upon coastal sea elevations in the northern North Pacific Ocean. J. Geophys. Res., 81, 31003110, doi:10.1029/JC081i018p03100.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, doi:10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1981: A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, northwest Africa, and Peru. Coastal Upwelling, F. A. Richards, Ed., Coastal Estuarine Sciences Series, Vol. 1, Amer. Geophys. Union, 107–118, doi:10.1029/CO001p0107.

  • Suanda, S. H., and J. A. Barth, 2015: Semidiurnal baroclinic tides on the central Oregon inner shelf. J. Phys. Oceanogr., 45, 26402659, doi:10.1175/JPO-D-14-0198.1.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, and R. E. Davis, 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, doi:10.1029/2008JC005086.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 553 162 19
PDF Downloads 401 101 10