Internal Tide Generation Using Green Function Analysis: To WKB or Not to WKB?

Manikandan Mathur Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India

Search for other papers by Manikandan Mathur in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Carter Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Glenn S. Carter in
Current site
Google Scholar
PubMed
Close
, and
Thomas Peacock Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Thomas Peacock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An established analytical technique for modeling internal tide generation by barotropic flow over bottom topography in the ocean is the Green function–based approach. To date, however, for realistic ocean studies this method has relied on the WKB approximation. In this paper, the complete Green function method, without the WKB approximation, is developed and tested, and in the process, the accuracy of the WKB approximation for realistic ridge geometries and ocean stratifications is considered. For isolated Gaussian topography, the complete Green function approach is shown to be accurate via close agreement with the results of numerical simulations for a wide range of height ratios and criticality; in contrast, the WKB approach is found to be inaccurate for small height ratios in the subcritical regime and all tall topography that impinges on the pycnocline. Two ocean systems are studied, the Kaena and Wyville Thomson Ridges, for which there is again excellent agreement between the complete Green function approach and numerical simulations, and the WKB approximate solutions have substantial errors. This study concludes that the complete Green function approach, which is typically only modestly more computationally expensive than the WKB approach, should be the go-to analytical method to model internal tide generation for realistic ocean ridge scenarios.

Corresponding author address: Manikandan Mathur, Department of Aerospace Engineering, Indian Institute of Technology Madras, Guindy, Chennai 600036, India. E-mail: manims@ae.iitm.ac.in

Abstract

An established analytical technique for modeling internal tide generation by barotropic flow over bottom topography in the ocean is the Green function–based approach. To date, however, for realistic ocean studies this method has relied on the WKB approximation. In this paper, the complete Green function method, without the WKB approximation, is developed and tested, and in the process, the accuracy of the WKB approximation for realistic ridge geometries and ocean stratifications is considered. For isolated Gaussian topography, the complete Green function approach is shown to be accurate via close agreement with the results of numerical simulations for a wide range of height ratios and criticality; in contrast, the WKB approach is found to be inaccurate for small height ratios in the subcritical regime and all tall topography that impinges on the pycnocline. Two ocean systems are studied, the Kaena and Wyville Thomson Ridges, for which there is again excellent agreement between the complete Green function approach and numerical simulations, and the WKB approximate solutions have substantial errors. This study concludes that the complete Green function approach, which is typically only modestly more computationally expensive than the WKB approach, should be the go-to analytical method to model internal tide generation for realistic ocean ridge scenarios.

Corresponding author address: Manikandan Mathur, Department of Aerospace Engineering, Indian Institute of Technology Madras, Guindy, Chennai 600036, India. E-mail: manims@ae.iitm.ac.in
Save
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29A, 307338, doi:10.1016/0198-0149(82)90098-X.

  • Balmforth, N. J., and T. Peacock, 2009: Tidal conversion by supercritical topography. J. Phys. Oceanogr., 39, 19651974, doi:10.1175/2009JPO4057.1.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., G. R. Ierley, and W. R. Young, 2002: Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32, 29002914, doi:10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, Coastal Estuarine Sci., Vol. 4, Amer. Geophys. Union, 1–16.

  • Carter, G. S., and M. A. Merrifield, 2007: Open boundary conditions for regional tidal simulations. Ocean Modell., 18, 194209, doi:10.1016/j.ocemod.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • Echeverri, P., and T. Peacock, 2010: Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech., 659, 247266, doi:10.1017/S0022112010002417.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, doi:10.1175/JPO-D-14-0002.1.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the north-west European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Hall, R. A., J. M. Huthnance, and R. G. Williams, 2011: Internal tides, nonlinear internal wave trains, and mixing in the Faroe-Shetland Channel. J. Geophys. Res., 116, C03008, doi:10.1029/2010JC006213.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., and M. A. Merrifield, 1999: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res., 104, 25 93725 951, doi:10.1029/1999JC900207.

    • Search Google Scholar
    • Export Citation
  • King, B., H. P. Zhang, and H. L. Swinney, 2010: Tidal flow over three-dimensional topography generates out-of-forcing-plane harmonics. Geophys. Res. Lett., 37, L14606, doi:10.1029/2010GL043221.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2004: Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett., 31, L09313, doi:10.1029/2003GL019393.

    • Search Google Scholar
    • Export Citation
  • Llewellyn-Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, doi:10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Llewellyn-Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191, doi:10.1017/S0022112003006098.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. S. Carter, and T. Peacock, 2014: Topographic scattering of the low mode internal tide in the deep ocean. J. Geophys. Res. Oceans, 119, 21652182, doi:10.1002/2013JC009152.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Munroe, J. R., and K. G. Lamb, 2005: Topographic amplitude dependence of internal wave generation by tidal forcing over idealized three-dimensional topography. J. Geophys. Res., 110, C02001, doi:10.1029/2004JC002537.

    • Search Google Scholar
    • Export Citation
  • Pétrélis, F., S. G. Llewellyn-Smith, and W. R. Young, 2006: Tidal conversion at a submarine ridge. J. Phys. Oceanogr., 36, 10531071, doi:10.1175/JPO2879.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr., 35, 645665, doi:10.1175/JPO2715.1.

  • Robinson, R. M., 1969: The effects of a vertical barrier on internal waves. Deep-Sea Res. Oceanogr. Abstr., 16, 421429, doi:10.1016/0011-7471(69)90030-8.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. B. Raj, and S. S. C. Shenoi, 2006: Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian Ocean. Geophys. Res. Lett., 33, L22609, doi:10.1029/2006GL027573.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., 1991: Evidence of a deep internal tide in the Faeroe–Shetland Channel. Tidal Hydrodynamics, B. B. Parker, Ed., 469–488.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zarroug, M., J. Nycander, and K. Döös, 2010: Energetics of tidally generated internal waves for nonuniform stratification. Tellus, 62A, 7179, doi:10.1111/j.1600-0870.2009.00415.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 130 22
PDF Downloads 222 78 15