Variability of the Turbulent Kinetic Energy Dissipation along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012

Bruno Ferron Laboratoire de Physique des Océans, CNRS, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, Plouzané, France

Search for other papers by Bruno Ferron in
Current site
Google Scholar
PubMed
Close
,
Florian Kokoszka Laboratoire de Physique des Océans, UBO, UMR 6523 CNRS-IFREMER-IRD-UBO, Brest, France

Search for other papers by Florian Kokoszka in
Current site
Google Scholar
PubMed
Close
,
Herlé Mercier Laboratoire de Physique des Océans, CNRS, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, Plouzané, France

Search for other papers by Herlé Mercier in
Current site
Google Scholar
PubMed
Close
,
Pascale Lherminier Laboratoire de Physique des Océans, IFREMER, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, Plouzané, France

Search for other papers by Pascale Lherminier in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck Laboratoire de Physique des Océans, CNRS, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, Plouzané, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
,
Aida Rios Instituto de Investigaciones Marinas de Vigo, Consejo Superior de Investigaciones Científicas, Vigo, Spain

Search for other papers by Aida Rios in
Current site
Google Scholar
PubMed
Close
, and
Virginie Thierry Laboratoire de Physique des Océans, IFREMER, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, Plouzané, France

Search for other papers by Virginie Thierry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of the turbulent kinetic energy dissipation due to internal waves is quantified using a finescale parameterization applied to the A25 Greenland–Portugal transect repeated every two years from 2002 to 2012. The internal wave velocity shear and strain are estimated for each cruise at 91 stations from full depth vertical profiles of density and velocity. The 2002–12 averaged dissipation rate 〈ε2002–2012〉 in the upper ocean lays in the range 1–10 × 10−10 W kg−1. At depth, 〈ε2002–2012〉 is smaller than 1 × 10−10 W kg−1 except over rough topography found at the continental slopes, the Reykjanes Ridge, and in a region delimited by the Azores–Biscay Rise and Eriador Seamount. There, the vertical energy flux of internal waves is preferentially oriented toward the surface and 〈ε2002–2012〉 is in the range 1–20 × 10−10 W kg−1. The interannual variability in the dissipation rates is remarkably small over the whole transect. A few strong dissipation rate events exceeding the uncertainty of the finescale parameterization occur at depth between the Azores–Biscay Rise and Eriador Seamount. This region is also marked by mesoscale eddying flows resulting in enhanced surface energy level and enhanced bottom velocities. Estimates of the vertical energy fluxes into the internal tide and into topographic internal waves suggest that the latter are responsible for the strong dissipation events. At Eriador Seamount, both topographic internal waves and the internal tide contribute with the same order of magnitude to the dissipation rate while around the Reykjanes Ridge the internal tide provides the bulk of the dissipation rate.

Corresponding author address: Bruno Ferron, Laboratoire de Physique des Océans, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, CS 10070, 29280 Plouzané, France. E-mail: bruno.ferron@ifremer.fr

Abstract

The variability of the turbulent kinetic energy dissipation due to internal waves is quantified using a finescale parameterization applied to the A25 Greenland–Portugal transect repeated every two years from 2002 to 2012. The internal wave velocity shear and strain are estimated for each cruise at 91 stations from full depth vertical profiles of density and velocity. The 2002–12 averaged dissipation rate 〈ε2002–2012〉 in the upper ocean lays in the range 1–10 × 10−10 W kg−1. At depth, 〈ε2002–2012〉 is smaller than 1 × 10−10 W kg−1 except over rough topography found at the continental slopes, the Reykjanes Ridge, and in a region delimited by the Azores–Biscay Rise and Eriador Seamount. There, the vertical energy flux of internal waves is preferentially oriented toward the surface and 〈ε2002–2012〉 is in the range 1–20 × 10−10 W kg−1. The interannual variability in the dissipation rates is remarkably small over the whole transect. A few strong dissipation rate events exceeding the uncertainty of the finescale parameterization occur at depth between the Azores–Biscay Rise and Eriador Seamount. This region is also marked by mesoscale eddying flows resulting in enhanced surface energy level and enhanced bottom velocities. Estimates of the vertical energy fluxes into the internal tide and into topographic internal waves suggest that the latter are responsible for the strong dissipation events. At Eriador Seamount, both topographic internal waves and the internal tide contribute with the same order of magnitude to the dissipation rate while around the Reykjanes Ridge the internal tide provides the bulk of the dissipation rate.

Corresponding author address: Bruno Ferron, Laboratoire de Physique des Océans, UMR 6523 CNRS-IFREMER-IRD-UBO, IFREMER Centre de Brest, CS 10070, 29280 Plouzané, France. E-mail: bruno.ferron@ifremer.fr
Save
  • Aguilar, A., and B. R. Sutherland, 2006: Internal wave generation from rough topography. Phys. Fluids, 18, 066603, doi:10.1063/1.2214538.

    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, doi:10.1175/JPO-D-14-0081.1.

    • Search Google Scholar
    • Export Citation
  • Fer, I., A. K. Peterson, and J. E. Ullgren, 2014: Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel overflow. J. Atmos. Oceanic Technol., 31, 11281150, doi:10.1175/JTECH-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., F. Kokoszka, H. Mercier, and P. Lherminier, 2014: Dissipation rate estimates from microstructure and finescale internal wave observations along the A25 Greenland–Portugal OVIDE line. J. Atmos. Oceanic Technol., 31, 25302543, doi:10.1175/JTECH-D-14-00036.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space–time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., 2006: Internal-wave reflection from uniform slopes: Higher harmonics and Coriolis effects. Nonlinear Processes Geophys., 13, 265273, doi:10.5194/npg-13-265-2006.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., C. Staquet, and P. Bouruet-Aubertot, 2006: Non-linear effects in internal-tide beams, and mixing. Ocean Modell., 12, 302318, doi:10.1016/j.ocemod.2005.06.001.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., M. M. Yale, and D. T. Sandwell, 2000: Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophys. Res. Lett., 27, 12511254, doi:10.1029/1999GL007003.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res. Oceanogr. Abstr., 19, 833846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Green, J. A. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104119, doi:10.1175/JPO-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869689, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, and D. P. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415, 10111014, doi:10.1038/4151011a.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., N. Furuichi, and R. Robertson, 2012: Assessment of finescale parameterizations of turbulent dissipation rates near mixing hotspots in the deep ocean. Geophys. Res. Lett., 39, L24601, doi:10.1029/2012GL054068.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, G. S. Carter, R. E. Todd, and S. T. Cole, 2011: Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res., 116, C03017, doi:10.1029/2010JC006592.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., 1976: Observations on the vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6, 894908, doi:10.1175/1520-0485(1976)006<0894:OOTVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. M. Thurnherr, 2012: Eddy-modulated internal waves and mixing on a midocean ridge. J. Phys. Oceanogr., 42, 12421248, doi:10.1175/JPO-D-11-0126.1.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, doi:10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191, doi:10.1017/S0022112003006098.

    • Search Google Scholar
    • Export Citation
  • Mercier, H., and A. Colin de Verdière, 1985: Space and time scales of mesoscale motions in the eastern North Atlantic. J. Phys. Oceanogr., 15, 171183, doi:10.1175/1520-0485(1985)015<0171:SATSOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R. C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by sub-surface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A., K. Polzin, B. King, K. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small‐scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, doi:10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 4851, doi:10.1038/ngeo1657.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493502, doi:10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Pairaud, I., C. Staquet, J. Sommeria, and M. Mahdizadeh, 2010: Generation of harmonics and sub-harmonics from an internal tide in a uniformly stratified fluid: Numerical and laboratory experiments. IUTAM Symposium on Turbulence in the Atmosphere and Oceans, D. Dritschel, Ed., IUTAM Book Series, Vol. 28, Springer, 5162, doi:10.1007/978-94-007-0360-5_5.

  • Palmer, M. R., G. R. Stephenson, M. E. Inall, C. Balfour, A. Düsterhus, and J. A. M. Green, 2015: Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst., 144, 5769, doi:10.1016/j.jmarsys.2014.11.005.

    • Search Google Scholar
    • Export Citation
  • Pétrélis, F., S. Llewellyn Smith, and W. R. Young, 2006: Tidal conversion at a submarine ridge. J. Phys. Oceanogr., 36, 10531071, doi:10.1175/JPO2879.1.

    • Search Google Scholar
    • Export Citation
  • Piron, A., V. Thierry, H. Mercier, and G. Caniaux, 2016: Argo float observations of basin-scale deep convection in the Irminger Sea during winter 2011–2012. Deep-Sea Res. I, 109, 7690, doi:10.1016/j.dsr.2015.12.012.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, doi:10.1080/03091927009365776.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603, doi:10.1029/2005GL023568.

  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2007: Inertial and tidal shear variability above Reykjanes Ridge. Deep-Sea Res. I, 54, 856870, doi:10.1016/j.dsr.2007.03.003.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2009: High-resolution open-ocean temperature spectra. J. Geophys. Res., 114, C05005, doi:10.1029/2008JC004967.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 167 13
PDF Downloads 149 56 9