Circulation and Stirring in the Southeast Pacific Ocean and the Scotia Sea Sectors of the Antarctic Circumpolar Current

Dhruv Balwada Department of Earth, Ocean, and Atmospheric Science, and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida

Search for other papers by Dhruv Balwada in
Current site
Google Scholar
PubMed
Close
,
Kevin G. Speer Department of Earth, Ocean, and Atmospheric Science, and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida

Search for other papers by Kevin G. Speer in
Current site
Google Scholar
PubMed
Close
,
Joseph H. LaCasce Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Joseph H. LaCasce in
Current site
Google Scholar
PubMed
Close
,
W. Brechner Owens Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by W. Brechner Owens in
Current site
Google Scholar
PubMed
Close
,
John Marshall Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
, and
Raffaele Ferrari Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The large-scale middepth circulation and eddy diffusivities in the southeast Pacific Ocean and Scotia Sea sectors between 110° and 45°W of the Antarctic Circumpolar Current (ACC) are described based on a subsurface quasi-isobaric RAFOS-float-based Lagrangian dataset. These RAFOS float data were collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mean flow, adjusted to a common 1400-m depth, shows the presence of jets in the time-averaged sense with speeds of 6 cm s−1 in the southeast Pacific Ocean and upward of 13 cm s−1 in the Scotia Sea. These jets appear to be locked to topography in the Scotia Sea but, aside from negotiating a seamount chain, are mostly free of local topographic constraints in the southeast Pacific Ocean. The eddy kinetic energy (EKE) is higher than the mean kinetic energy everywhere in the sampled domain by about 50%. The magnitude of the EKE increases drastically (by a factor of 2 or more) as the current crosses over the Hero and Shackleton fracture zones into the Scotia Sea. The meridional isopycnal stirring shows lateral and vertical variations with local eddy diffusivities as high as 2800 ± 600 m2 s−1 at 700 m decreasing to 990 ± 200 m2 s−1 at 1800 m in the southeast Pacific Ocean. However, the cross-ACC diffusivity in the southeast Pacific Ocean is significantly lower, with values of 690 ± 150 and 1000 ± 200 m2 s−1 at shallow and deep levels, respectively, due to the action of jets. The cross-ACC diffusivity in the Scotia Sea is about 1200 ± 500 m2 s−1.

Geophysical Fluid Dynamics Institute Contribution Number 476.

Corresponding author address: Dhruv Balwada, Geophysical Fluid Dynamics Institute, Florida State University, 018 Keen Building, 77 Chieftan Way, Tallahassee, FL 32306-4360. E-mail: db10d@fsu.edu

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Abstract

The large-scale middepth circulation and eddy diffusivities in the southeast Pacific Ocean and Scotia Sea sectors between 110° and 45°W of the Antarctic Circumpolar Current (ACC) are described based on a subsurface quasi-isobaric RAFOS-float-based Lagrangian dataset. These RAFOS float data were collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mean flow, adjusted to a common 1400-m depth, shows the presence of jets in the time-averaged sense with speeds of 6 cm s−1 in the southeast Pacific Ocean and upward of 13 cm s−1 in the Scotia Sea. These jets appear to be locked to topography in the Scotia Sea but, aside from negotiating a seamount chain, are mostly free of local topographic constraints in the southeast Pacific Ocean. The eddy kinetic energy (EKE) is higher than the mean kinetic energy everywhere in the sampled domain by about 50%. The magnitude of the EKE increases drastically (by a factor of 2 or more) as the current crosses over the Hero and Shackleton fracture zones into the Scotia Sea. The meridional isopycnal stirring shows lateral and vertical variations with local eddy diffusivities as high as 2800 ± 600 m2 s−1 at 700 m decreasing to 990 ± 200 m2 s−1 at 1800 m in the southeast Pacific Ocean. However, the cross-ACC diffusivity in the southeast Pacific Ocean is significantly lower, with values of 690 ± 150 and 1000 ± 200 m2 s−1 at shallow and deep levels, respectively, due to the action of jets. The cross-ACC diffusivity in the Scotia Sea is about 1200 ± 500 m2 s−1.

Geophysical Fluid Dynamics Institute Contribution Number 476.

Corresponding author address: Dhruv Balwada, Geophysical Fluid Dynamics Institute, Florida State University, 018 Keen Building, 77 Chieftan Way, Tallahassee, FL 32306-4360. E-mail: db10d@fsu.edu

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Save
  • Barré, N., C. Provost, A. Renault, and N. Sennéchael, 2011: Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January–February 2006: A satellite perspective. Deep-Sea Res. II, 58, 25332554, doi:10.1016/j.dsr2.2011.01.003.

    • Search Google Scholar
    • Export Citation
  • Bates, M., R. Tulloch, J. Marshall, and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, doi:10.1175/JPO-D-13-0130.1.

    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., K. L. Sheen, A. C. Naveira Garabato, D. A. Smeed, K. G. Speer, A. M. Thurnherr, M. P. Meredith, and S. Waterman, 2014: Deep boundary current disintegration in Drake Passage. Geophys. Res. Lett., 41, 121127, doi:10.1002/2013GL058617.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., S. T. Gille, J. L. McClean, G. R. Flierl, and A. Griesel, 2015: A multi-wavenumber theory for eddy diffusivities and its application to the southeast Pacific (DIMES) region. J. Phys. Oceanogr., 45, 18771896, doi:10.1175/JPO-D-14-0229.1.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., L. D. Talley, and B. M. Sloyan, 2010: Nonlinear vorticity balance of the Subantarctic Front in the southeast Pacific. J. Geophys. Res., 115, C06026, doi:10.1029/2009JC005611.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571, doi:10.1016/S0198-0149(12)80023-9.

  • Faure, V., and K. Speer, 2012: Deep circulation in the eastern South Pacific Ocean. J. Mar. Res., 70, 748778, doi:10.1357/002224012806290714.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., C. Provost, A. Renault, N. Sennéchael, N. Barré, Y.-H. Park, and J. H. Lee, 2012: Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin. J. Geophys. Res., 117, C12024, doi:10.1029/2012JC008264.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., C. Provost, N. Sennéchael, and J.-H. Lee, 2013: Circulation in Drake Passage revisited using new current time series and satellite altimetry: 2. The Ona Basin. J. Geophys. Res. Oceans, 118, 147165, doi:10.1002/2012JC008193.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., T. K. Chereskin, and M. R. Mazloff, 2011: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res., 116, C08015, doi:10.1029/2011JC006999.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, doi:10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Garraffo, Z. D., A. J. Mariano, A. Griffa, C. Veneziani, and E. P. Chassignet, 2001: Lagrangian data in a high-resolution numerical simulation of the North Atlantic: I. Comparison with in situ drifter data. J. Mar. Syst., 29, 157176, doi:10.1016/S0924-7963(01)00015-X.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003a: Float observations of the Southern Ocean. Part I: Estimating mean fields, bottom velocities, and topographic steering. J. Phys. Oceanogr., 33, 11671181, doi:10.1175/1520-0485(2003)033<1167:FOOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003b: Float observations of the Southern Ocean. Part II: Eddy fluxes. J. Phys. Oceanogr., 33, 11821196, doi:10.1175/1520-0485(2003)033<1182:FOOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., C. Eden, N. Koopmann, and E. Yulaeva, 2015: Comparing isopycnal eddy diffusivities in the southern ocean with predictions from linear theory. Ocean Modell., 94, 3345, doi:10.1016/j.ocemod.2015.08.001.

    • Search Google Scholar
    • Export Citation
  • Hancock, C., and K. Speer, 2013a: Critical layers and isopycnal mixing in the Southern Ocean RAFOS float data report February 2010–February 2012. FSU Marine Field Group Rep. 131, 153 pp. [Available online at http://gfdi.fsu.edu/Research/PDFs/CLIMS.]

  • Hancock, C., and K. Speer, 2013b: Diapycnal and Isopyncal Mixing Experiment in the Southern Ocean RAFOS float data report February 2009–February 2012. FSU Marine Field Group Rep. 132, 217 pp. [Available online at http://gfdi.fsu.edu/Research/PDFs/DIMES.]

  • Hua, B. L., J. C. McWilliams, and P. Klein, 1998: Lagrangian accelerations in geostrophic turbulence. J. Fluid Mech., 366, 87108, doi:10.1017/S0022112098001001.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and P. D. Killworth, 1995: Effects of bottom topography in the large-scale circulation of the Southern Ocean. J. Phys. Oceanogr., 25, 24852497, doi:10.1175/1520-0485(1995)025<2485:EOBTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., and J. Marshall, 2002: Testing theories of the vertical stratification of the ACC against observations. Dyn. Atmos. Oceans, 36, 233246, doi:10.1016/S0377-0265(02)00031-3.

    • Search Google Scholar
    • Export Citation
  • Killworth, P., 1992: An equivalent-barotropic mode in the fine resolution model. J. Phys. Oceanogr., 22, 13791387, doi:10.1175/1520-0485(1992)022<1379:AEBMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, doi:10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, doi:10.1016/j.pocean.2008.02.002.

  • LaCasce, J., and P. Isachsen, 2010: The linear models of the ACC. Prog. Oceanogr., 84, 139157, doi:10.1016/j.pocean.2009.11.002.

  • LaCasce, J., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, doi:10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y., T. Chereskin, J. Sprintall, and E. Firing, 2007: Mean jets, mesoscale variability and eddy momentum fluxes in the surface layer of the Antarctic Circumpolar Current in Drake Passage. J. Mar. Res., 65, 2758, doi:10.1357/002224007780388694.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, doi:10.1175/1520-0485-32.9.2425.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and Coauthors, 2011: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Rev. Geophys., 49, RG4005, doi:10.1029/2010RG000348.

    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., 1985: Drifter spectra and diffusivities. J. Mar. Res., 43, 3755, doi:10.1357/002224085788437334.

  • Nakamura, N., 2008: Sensitivity of global mixing and fluxes to isolated transport barriers. J. Atmos. Sci., 65, 38003818, doi:10.1175/2008JAS2641.1.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. P. Williams, and S. Bacon, 2014: The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog. Oceanogr., 120, 4178, doi:10.1016/j.pocean.2013.07.018.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2002: SOFAR floats reveal midlatitude intermediate North Atlantic general circulation. Part II: An Eulerian statistical view. J. Phys. Oceanogr., 32, 20342053, doi:10.1175/1520-0485(2002)032<2034:SFRMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and N. L. Bindoff, 2014: On the nonequivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective. J. Geophys. Res. Oceans, 119, 52215243, doi:10.1002/2013JC009516.

    • Search Google Scholar
    • Export Citation
  • Rupolo, V., V. Artale, B. L. Hua, and A. Provenzale, 1996: Lagrangian velocity spectra at 700 m in the western North Atlantic. J. Phys. Oceanogr., 26, 15911607, doi:10.1175/1520-0485(1996)026<1591:LVSAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and R. Morrow, 2008a: Southern ocean fronts and their variability to climate modes. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008b: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Sciremammano, F., Jr., R. D. Pillsbury, W. D. Nowlin Jr., and T. Whitworth III, 1980: Spatial scales of temperature and flow in Drake Passage. J. Geophys. Res., 85, 40154028, doi:10.1029/JC085iC07p04015.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, doi:10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571, doi:10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, doi:10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and P. P. Niiler, 1996: Statistical analysis of the surface circulation of the California Current. J. Geophys. Res., 101, 22 63122 645, doi:10.1029/96JC02008.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Taylor, G., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212.

  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc. London, A366, 45294541, doi:10.1098/rsta.2008.0196.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., P. H. Haynes, C. Wilson, and K. J. Richards, 2010: Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett., 37, L23602, doi:10.1029/2010GL045386.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, doi:10.1175/JPO-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1990: Suppression of deep oxygen concentrations by Drake Passage. Deep-Sea Res., 37A, 18991907, doi:10.1016/0198-0149(90)90085-A.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1465 893 32
PDF Downloads 340 124 13