Breaking the Linkage Between Labrador Sea Water Production and Its Advective Export to the Subtropical Gyre

Sijia Zou Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina

Search for other papers by Sijia Zou in
Current site
Google Scholar
PubMed
Close
and
M. Susan Lozier Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina

Search for other papers by M. Susan Lozier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep water formation in the northern North Atlantic has been of long-standing interest because the resultant water masses, along with those that flow over the Greenland–Scotland Ridge, constitute the lower limb of the Atlantic meridional overturning circulation (AMOC), which carries these cold, deep waters southward to the subtropical region and beyond. It has long been assumed that an increase in deep water formation would result in a larger southward export of newly formed deep water masses. However, recent observations of Lagrangian floats have raised questions about this linkage. Motivated by these observations, the relationship between convective activity in the Labrador Sea and the export of newly formed Labrador Sea Water (LSW), the shallowest component of the deep AMOC, to the subtropics is explored. This study uses simulated Lagrangian pathways of synthetic floats produced with output from a global ocean–sea ice model. It is shown that substantial recirculation of newly formed LSW in the subpolar gyre leads to a relatively small fraction of this water exported to the subtropical gyre: 40 years after release, only 46% of the floats are able to reach the subtropics. Furthermore, waters produced from any one particular convection event are not collectively and contemporaneously exported to the subtropical gyre, such that the waters that are exported to the subtropical gyre have a wide distribution in age.

Corresponding author address: Sijia Zou, Division of Earth and Ocean Sciences, Duke University, Box 90227, Durham, NC 27708. E-mail: sijia.zou@duke.edu

Abstract

Deep water formation in the northern North Atlantic has been of long-standing interest because the resultant water masses, along with those that flow over the Greenland–Scotland Ridge, constitute the lower limb of the Atlantic meridional overturning circulation (AMOC), which carries these cold, deep waters southward to the subtropical region and beyond. It has long been assumed that an increase in deep water formation would result in a larger southward export of newly formed deep water masses. However, recent observations of Lagrangian floats have raised questions about this linkage. Motivated by these observations, the relationship between convective activity in the Labrador Sea and the export of newly formed Labrador Sea Water (LSW), the shallowest component of the deep AMOC, to the subtropics is explored. This study uses simulated Lagrangian pathways of synthetic floats produced with output from a global ocean–sea ice model. It is shown that substantial recirculation of newly formed LSW in the subpolar gyre leads to a relatively small fraction of this water exported to the subtropical gyre: 40 years after release, only 46% of the floats are able to reach the subtropics. Furthermore, waters produced from any one particular convection event are not collectively and contemporaneously exported to the subtropical gyre, such that the waters that are exported to the subtropical gyre have a wide distribution in age.

Corresponding author address: Sijia Zou, Division of Earth and Ocean Sciences, Duke University, Box 90227, Durham, NC 27708. E-mail: sijia.zou@duke.edu
Save
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, Vol. 12, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 810.

  • Berliand, M. E., and T. G. Strokina, 1980: Global Distribution of the Total Amount of Clouds. Hydrometeorological Publishing House, 71 pp.

  • Biastoch, A., C. W. Böning, J. Getzlaff, J. M. Molines, and G. Madec, 2008: Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and N. Grima, 2010: ARIANE v2.2.6. Laboratoire de Physique des Oceans. [Available online at http://www.univ-brest.fr/lpo/ariane/.]

  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, doi:10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • CDIAC, 2015: CLIVAR repeat section AR07W. Carbon Dioxide International Analysis Center. Subset used: 1992–2004, accessed 29 January 2015. [Available online at http://cdiac.ornl.gov/oceans/RepeatSections/clivar_ar07w.html.]

  • CERSAT, 2002: Mean Wind Fields (MWF product) volume 1—ERS-1, ERS-2 & NSCAT user manual. Rep. C2-MUT-W-05-IF, Department of Oceanography from Space, Ifremer, 54 pp.

  • Curry, R. G., M. S. McCartney, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature, 391, 575577, doi:10.1038/35356.

    • Search Google Scholar
    • Export Citation
  • Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33, L21S06, doi:10.1029/2006GL026702.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., M. Visbeck, R. Zantopp, and N. Nunes, 2010: Interannual to decadal variability of outflow from the Labrador Sea. Geophys. Res. Lett., 37, L24610, doi:10.1029/2010GL045321.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., M. S. Lozier, C. W. Böning, and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res. II, 58, 17811797, doi:10.1016/j.dsr2.2010.10.059.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., M. S. Lozier, A. Biastoch, and C. W. Böning, 2012: Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett., 39, L24606, doi:10.1029/2012GL053978.

    • Search Google Scholar
    • Export Citation
  • Getzlaff, J., C. W. Böning, C. Eden, and A. Biastoch, 2005: Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett., 32, L09602, doi:10.1029/2004GL021002.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., 1997: Modeling the large scale behaviour of the coupled ocean-sea ice system. Ph.D. thesis, Université Catholique de Louvain, 231 pp.

  • Han, G., K. Ohashi, N. Chen, P. G. Myers, N. Nunes, and J. Fischer, 2010: Decline and partial rebound of the Labrador Current 1993–2004: Monitoring ocean currents from altimetric and conductivity‐temperature‐depth data. J. Geophys. Res., 115, C12012, doi:10.1029/2009JC006091.

    • Search Google Scholar
    • Export Citation
  • Jourdan, D., E. Balopoulos, M.-J. Garcia-Fernandez, and C. Maillard, 1998: Objective analysis of temperature and salinity historical data set over the Mediterranean basin. OCEANS ‘98 Conference Proceedings, Vol. 1, IEEE, 82–87, doi: 10.1109/OCEANS.1998.725649.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., and I. Yashayaev, 2015: Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog. Oceanogr., 132, 220232, doi:10.1016/j.pocean.2014.12.010.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., M. Rhein, L. Stramma, W. M. Smethie, J. L. Bullister, and D. A. LeBel, 2007: Changes in the pool of Labrador Sea Water in the subpolar North Atlantic. Geophys. Res. Lett., 34, L06605, doi:10.1029/2006GL028959.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., B. Klein, L. Stramma, M. Rhein, and K. P. Koltermann, 2009: Variability and propagation of Labrador Sea Water in the southern subpolar North Atlantic. Deep-Sea Res. I, 56, 16561674, doi:10.1016/j.dsr.2009.05.010.

    • Search Google Scholar
    • Export Citation
  • Knauss, J. A., 1997: Introduction to Physical Oceanography. Waveland Press, Inc., 338 pp.

  • Lankhorst, M., and W. Zenk, 2006: Lagrangian observations of the middepth and deep velocity fields of the northeastern Atlantic Ocean. J. Phys. Oceanogr., 36, 4363, doi:10.1175/JPO2869.1.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., W. B. Owens, and R. E. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52, 767785, doi:10.1016/j.dsr.2004.12.007.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, doi:10.1146/annurev-marine-120710-100740.

  • Lozier, M. S., S. F. Gary, and A. S. Bower, 2013: Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export. Deep-Sea Res. II, 85, 147153, doi:10.1016/j.dsr2.2012.07.037.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., R. A. Fine, W. D. Wilson, R. G. Curry, J. Abell, and M. S. McCartney, 1998: The arrival of recently formed Labrador sea water in the Deep Western Boundary Current at 26.5°N. Geophys. Res. Lett., 25, 22492252, doi:10.1029/98GL01853.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS/CPC, 2015: North Atlantic Oscillation (NAO). NOAA/National Weather Service/Climate Prediction Center, subset used: December 1960–March 2004. [Available online at http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml#publication.]

  • Pena-Molino, B., T. M. Joyce, and J. M. Toole, 2011: Recent changes in the Labrador Sea Water within the deep western boundary current southeast of Cape Cod. Deep-Sea Res. I, 58, 10191030, doi:10.1016/j.dsr.2011.07.006.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, doi:10.1175/JPO3178.1.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, doi:10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2011: Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II, 58, 18191832, doi:10.1016/j.dsr2.2010.10.061.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., D. Kieke, and R. Steinfeldt, 2015: Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans, 120, 24712487, doi:10.1002/2014JC010605.

    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., 2009: On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J. Mar. Sci., 66, 14481454, doi:10.1093/icesjms/fsp094.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34, 817843, doi:10.1175/1520-0485(2004)034<0817:CADEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., D. Kieke, M. Rhein, F. Schott, I. Yashayaev, and K. P. Koltermann, 2004: Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep-Sea Res. I, 51, 10331056, doi:10.1016/j.dsr.2004.04.001.

    • Search Google Scholar
    • Export Citation
  • Sy, A., M. Rhein, J. Lazier, K. P. Koltermann, J. Meincke, A. Putzka, and M. Bersch, 1997: Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean. Nature, 386, 675679, doi:10.1038/386675a0.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, doi:10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. G. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. NCAR Tech. Note NCAR/TN-338+STR, 93 pp., doi:10.5065/D6ST7MR9.

  • van Aken, H. M., M. F. De Jong, and I. Yashayaev, 2011: Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection. Deep-Sea Res. I, 58, 505523, doi:10.1016/j.dsr.2011.02.008.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., M. O. Baringer, W. E. Johns, C. S. Meinen, L. M. Beal, M. F. de Jong, and H. M. van Aken, 2011: Propagation pathways of classical Labrador Sea water from its source region to 26°N. J. Geophys. Res., 116, C12027, doi:10.1029/2011JC007171.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Schmitz, H. E. Hurlburt, P. J. Hogan, and E. P. Chassignet, 2010: Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations. J. Geophys. Res., 115, C12048, doi:10.1029/2010JC006351.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009: Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett., 36, L01606, doi:10.1029/2008GL036162.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1417 336 95
PDF Downloads 503 102 4