Residual Transport of Suspended Material by Tidal Straining near Sloping Topography

Kirstin Schulz Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany

Search for other papers by Kirstin Schulz in
Current site
Google Scholar
PubMed
Close
and
Lars Umlauf Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany

Search for other papers by Lars Umlauf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tidal straining is known to have an important impact on the generation of residual currents and the transport of suspended material in estuaries and the coastal ocean. Essential for this process is an externally imposed horizontal density gradient, typically resulting from either freshwater runoff or differential heating. Here, it is shown that near sloping topography, tidal straining may effectively transport suspended material across isobaths even if freshwater runoff and differential heating do not play a significant role. A combined theoretical and idealized modeling approach is used to illustrate the basic mechanisms and implications of this new process. The main finding of this study is that, for a wide range of conditions, suspended material is transported upslope by a pumping mechanism that is in many respects similar to classical tidal pumping. Downslope transport may also occur, however, only for the special cases of slowly sinking material in the vicinity of slopes with a slope angle larger than a critical threshold. The effective residual velocity at which suspended material is transported across isobaths is a significant fraction of the tidal velocity amplitude (up to 40% in some cases), suggesting that suspended material may be transported over large distances during a single tidal cycle.

Corresponding author address: Kristin Schulz, Department of Physical Oceanography, Leibniz-Institute for Baltic Sea Research, Seestraße 15, 18119 Warnemünde, Germany. E-mail: kirstin.schulz@io-warnemuende.de

Abstract

Tidal straining is known to have an important impact on the generation of residual currents and the transport of suspended material in estuaries and the coastal ocean. Essential for this process is an externally imposed horizontal density gradient, typically resulting from either freshwater runoff or differential heating. Here, it is shown that near sloping topography, tidal straining may effectively transport suspended material across isobaths even if freshwater runoff and differential heating do not play a significant role. A combined theoretical and idealized modeling approach is used to illustrate the basic mechanisms and implications of this new process. The main finding of this study is that, for a wide range of conditions, suspended material is transported upslope by a pumping mechanism that is in many respects similar to classical tidal pumping. Downslope transport may also occur, however, only for the special cases of slowly sinking material in the vicinity of slopes with a slope angle larger than a critical threshold. The effective residual velocity at which suspended material is transported across isobaths is a significant fraction of the tidal velocity amplitude (up to 40% in some cases), suggesting that suspended material may be transported over large distances during a single tidal cycle.

Corresponding author address: Kristin Schulz, Department of Physical Oceanography, Leibniz-Institute for Baltic Sea Research, Seestraße 15, 18119 Warnemünde, Germany. E-mail: kirstin.schulz@io-warnemuende.de
Save
  • Amoudry, L. O., and A. J. Souza, 2011: Impact of sediment-induced stratification and turbulence closures on sediment transport and morphological modelling. Cont. Shelf Res., 31, 912928, doi:10.1016/j.csr.2011.02.014.

    • Search Google Scholar
    • Export Citation
  • Becherer, J., and L. Umlauf, 2011: Boundary mixing in lakes: 1. Modeling the effect of shear-induced convection. J. Geophys. Res., 116, C10017, doi:10.1029/2011JC007119.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and R. D. Hetland, 2010: Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J. Phys. Oceanogr., 40, 12431262, doi:10.1175/2010JPO4270.1.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., H. Schuttelaars, and A. Geyer, 2013: Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. J. Phys. Oceanogr., 43, 18411861, doi:10.1175/JPO-D-12-0231.1.

    • Search Google Scholar
    • Export Citation
  • Cossu, R., and M. G. Wells, 2013: The interaction of large amplitude internal seiches with a shallow sloping lakebed: Observations of benthic turbulence in Lake Simcoe, Ontario, Canada. PLoS One, 8, e57444, doi:10.1371/journal.pone.0057444.

    • Search Google Scholar
    • Export Citation
  • Dade, W. B., A. R. M. Nowell, and P. A. Jumars, 1992: Predicting erosion resistance of muds. Mar. Geol., 105, 285297, doi:10.1016/0025-3227(92)90194-M.

    • Search Google Scholar
    • Export Citation
  • Endoh, T., Y. Yoshikawa, T. Matsuno, Y. Wakata, K.-J. Lee, and L. Umlauf, 2016: Observational evidence for tidal straining over a sloping continental shelf. Cont. Shelf Res., 117, 1219, doi:10.1016/j.csr.2016.01.018.

    • Search Google Scholar
    • Export Citation
  • Ferguson, R., and M. Church, 2004: A simple universal equation for grain settling velocity. J. Sediment. Res., 74, 933937, doi:10.1306/051204740933.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1991: Marginal mixing theories. Atmos.–Ocean, 29, 313339, doi:10.1080/07055900.1991.9649407.

  • Grant, J., and G. Daborn, 1994: The effects of bioturbation on sediment transport on an intertidal mudflat. Neth. J. Sea Res., 32, 6372, doi:10.1016/0077-7579(94)90028-0.

    • Search Google Scholar
    • Export Citation
  • Grant, J., U. Bathmann, and E. Mills, 1986: The interaction between benthic diatom films and sediment transport. Estuarine Coastal Shelf Sci., 23, 225238, doi:10.1016/0272-7714(86)90056-9.

    • Search Google Scholar
    • Export Citation
  • Jay, D. A., and J. D. Musiak, 1994: Particle trapping in estuarine tidal flows. J. Geophys. Res., 99, 20 44520 461, doi:10.1029/94JC00971.

    • Search Google Scholar
    • Export Citation
  • Krone, R. B., 1962: Flume studies of the transport of sediment in estuarial shoaling processes: Final report. Hydraulic Engineering Laboratory and Sanitary Research Laboratory Rep., 110 pp.

  • Lorke, A., F. Peeters, and A. Wüest, 2005: Shear-induced convective mixing in bottom boundary layers on slopes. Limnol. Oceanogr., 50, 16121619, doi:10.4319/lo.2005.50.5.1612.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., V. Mohrholz, and L. Umlauf, 2008: Stratification and mixing on sloping boundaries. Geophys. Res. Lett., 35, L14610, doi:10.1029/2008GL034607.

    • Search Google Scholar
    • Export Citation
  • Lorrai, C., L. Umlauf, J. Becherer, A. Lorke, and A. Wüest, 2011: Boundary mixing in lakes: 2. Combined effects of shear- and convectively induced turbulence on basin-scale mixing. J. Geophys. Res., 116, C10018, doi:10.1029/2011JC007121.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and W. R. Geyer, 2010: Advances in estuarine physics. Annu. Rev. Mar. Sci., 2, 3558, doi:10.1146/annurev-marine-120308-081015.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 806 pp.

  • Pritchard, D. W., 1952: Salinity distribution and circulation in the Chesapeake Bay estuarine system. J. Mar. Res., 11, 106123.

  • Sanford, L., and M.-L. Chang, 1997: The bottom boundary condition for suspended sediment deposition. J. Coastal Res., 25, 317. [Available online at http://www.jstor.org/stable/25736101.]

    • Search Google Scholar
    • Export Citation
  • Sassi, M., M. Duran-Matute, T. van Kessel, and T. Gerkema, 2015: Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: The Dutch Wadden Sea. Ocean Dyn., 65, 13211333, doi:10.1007/s10236-015-0866-2.

    • Search Google Scholar
    • Export Citation
  • Schulz, E., H. M. Schuttelaars, U. Gräwe, and H. Burchard, 2015: Impact of the depth-to-width ratio of periodically stratified tidal channels on the estuarine circulation. J. Phys. Oceanogr., 8, 20482069, doi:10.1175/JPO-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., and C. T. Friedrichs, 2003: The influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary. Ocean Dyn., 53, 208219, doi:10.1007/s10236-003-0034-y.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., and C. T. Friedrichs, 2007: Sediment pumping by tidal asymmetry in a partially mixed estuary. J. Geophys. Res., 112, C07028, doi:10.1029/2006JC003784.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., 1997: Physical processes in the ROFI regime. J. Mar. Syst., 12, 315, doi:10.1016/S0924-7963(96)00085-1.

  • Simpson, J. H., J. Brown, J. Matthews, and G. Allen, 1990: Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 13, 125132, doi:10.2307/1351581.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, doi:10.1357/002224003322005087.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795827, doi:10.1016/j.csr.2004.08.004.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2011: Diapycnal transport and mixing efficiency in stratified boundary layers near sloping topography. J. Phys. Oceanogr., 41, 329345, doi:10.1175/2010JPO4438.1.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., H. Burchard, and K. Bolding, 2005: GOTM—Scientific documentation, version 3.2. Leibniz-Institute for Baltic Sea Research Marine Science Rep. 63, 346 pp.

  • Umlauf, L., W. D. Smyth, and J. N. Moum, 2015: Energetics of bottom Ekman layers during buoyancy arrest. J. Phys. Oceanogr., 45, 30993117, doi:10.1175/JPO-D-15-0041.1.

    • Search Google Scholar
    • Export Citation
  • Uncles, R. J., R. C. A. Elliott, and S. A. Weston, 1985: Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuarine Coastal Shelf Sci., 20, 147167, doi:10.1016/0272-7714(85)90035-6.

    • Search Google Scholar
    • Export Citation
  • Van Leussen, W., 1988: Aggregation of particles, settling velocity of mud flocs: A review. Physical Processes in Estuaries, J. Dronkers and W. van Leussen, Eds., Springer, 347–403.

  • van Rijn, L. C., 1984a: Sediment transport, Part I: Bed load transport. J. Hydraul. Eng., 110, 14311456, doi:10.1061/(ASCE)0733-9429(1984)110:10(1431).

    • Search Google Scholar
    • Export Citation
  • van Rijn, L. C., 1984b: Sediment transport, Part II: Suspended load transport. J. Hydraul. Eng., 110, 16131641, doi:10.1061/(ASCE)0733-9429(1984)110:11(1613).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 97 14
PDF Downloads 259 60 11