On the Variation of the Effective Breaking Strength in Oceanic Sea States

Christopher J. Zappa Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Christopher J. Zappa in
Current site
Google Scholar
PubMed
Close
,
Michael L. Banner School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia, and Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Michael L. Banner in
Current site
Google Scholar
PubMed
Close
,
Russel P. Morison School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Russel P. Morison in
Current site
Google Scholar
PubMed
Close
, and
Sophia E. Brumer Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Sophia E. Brumer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A spectral framework for quantifying the geometric/kinematic and dynamic/energetic properties of breaking ocean waves was proposed by Phillips in 1985. Phillips assumed a constant breaking strength coefficient to link the kinematic/geometric breaking crest properties to the associated excess energy and momentum fluxes from the waves to the upper ocean. However, a scale-dependent (spectral) breaking strength coefficient is needed, but is unavailable from measurements. In this paper, the feasibility of a parametric mean effective breaking strength coefficient valid for a wide range of sea states is investigated. All available ocean breaking wave datasets were analyzed and complemented with wave model behavior. Robust evidence is found supporting a single linear parameter relationship between the effective breaking strength and wave age or significant wave steepness. Envisaged applications for the effective breaking strength are described.

Lamont-Doherty Earth Observatory Contribution Number 8018.

Corresponding author address: Christopher J. Zappa, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: zappa@ldeo.columbia.edu

Abstract

A spectral framework for quantifying the geometric/kinematic and dynamic/energetic properties of breaking ocean waves was proposed by Phillips in 1985. Phillips assumed a constant breaking strength coefficient to link the kinematic/geometric breaking crest properties to the associated excess energy and momentum fluxes from the waves to the upper ocean. However, a scale-dependent (spectral) breaking strength coefficient is needed, but is unavailable from measurements. In this paper, the feasibility of a parametric mean effective breaking strength coefficient valid for a wide range of sea states is investigated. All available ocean breaking wave datasets were analyzed and complemented with wave model behavior. Robust evidence is found supporting a single linear parameter relationship between the effective breaking strength and wave age or significant wave steepness. Envisaged applications for the effective breaking strength are described.

Lamont-Doherty Earth Observatory Contribution Number 8018.

Corresponding author address: Christopher J. Zappa, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: zappa@ldeo.columbia.edu
Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Krtaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H., and M. L. Banner, 2003: Performance of a saturation-based dissipation source term for wind wave spectral modelling. J. Phys. Oceanogr., 33, 12741298, doi:10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184, doi:10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., and F. Webster, 2006: Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res., 111, C03017, doi:10.1029/2005JC003158.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., and P. A. Hwang, 2016: Using energy dissipation rate to obtain active whitecap fraction. J. Phys. Oceanogr., 46, 461481, doi:10.1175/JPO-D-15-0069.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., B. Chapron, and F. Collard, 2009: Observation of swell dissipation across oceans. Geophys. Res. Lett., 36, L06607, doi:10.1029/2008GL037030.

    • Search Google Scholar
    • Export Citation
  • Asher, W. E., and R. Wanninkhof, 1998a: Transient tracers and air–sea gas transfer. J. Geophys. Res., 103, 15 93915 958, doi:10.1029/98JC00379.

    • Search Google Scholar
    • Export Citation
  • Asher, W. E., and R. Wanninkhof, 1998b: The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. J. Geophys. Res., 103, 10 55510 560, doi:10.1029/98JC00245.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 2007: Wave breaking onset and strength for two-dimensional deep water wave groups. J. Fluid Mech., 585, 93115, doi:10.1017/S0022112007006568.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking forecasts. Part I. Model framework and validation against field data. Ocean Modell., 33, 177189, doi:10.1016/j.ocemod.2010.01.002.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., X. Barthelemy, F. Fedele, M. Allis, A. Benetazzo, F. Dias, and W. L. Peirson, 2014a: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, doi:10.1103/PhysRevLett.112.114502.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., C. J. Zappa, and J. Gemmrich, 2014b: A note on Phillips’ spectral framework for ocean whitecaps. J. Phys. Oceanogr., 44, 17271734, doi:10.1175/JPO-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, G., E. L Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, 2011: Production flux of sea spray aerosol. Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

    • Search Google Scholar
    • Export Citation
  • Dickey, T., G. Kattawar, and K. Voss, 2011: Shedding new light on light in the ocean. Phys. Today, 64, 4450, doi:10.1063/1.3580492.

  • Dickey, T., and Coauthors, 2012: Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean. J. Geophys. Res., 117, C00H20, doi:10.1029/2012JC007964.

    • Search Google Scholar
    • Export Citation
  • Drazen, D. A., W. K. Melville, and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332, doi:10.1017/S0022112008002826.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., C. J. Zappa, M. L. Banner, and R. P. Morison, 2013: Wave breaking in developing and mature seas. J. Geophys. Res. Oceans., 118, 45424552, doi:10.1002/jgrc.20334.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29, 16331648, doi:10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18, 277293, doi:10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, doi:10.1109/TGRS.2011.2177666.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverages. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., M. A. Sletten, and J. V. Toporkov, 2008: Analysis of radar sea return for breaking wave investigation. J. Geophys. Res., 113, C02003, doi:10.1029/2007JC004319.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., and Coauthors, 2002: The FAIRS experiment. IEEE Geoscience and Remote Sensing Society Newsletter, Vol. 123, IEEE, New York, NY, 12–17.

  • Keeling, R. F., 1993: On the role of large bubbles in air–sea gas exchange and supersaturation in the ocean. J. Mar. Res., 51, 237271, doi:10.1357/0022240933223800.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, doi:10.1175/2010JTECHO744.1.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, doi:10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

  • Kukulka, T., and T. Hara, 2008a: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part I: Mature seas. J. Phys. Oceanogr., 38, 21452163, doi:10.1175/2008JPO3961.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and T. Hara, 2008b: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part II: Growing seas. J. Phys. Oceanogr., 38, 21642184, doi:10.1175/2008JPO3962.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24, 20412049, doi:10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merlivat, L., and L. Mémery, 1983: Gas exchange across an air–water interface: Experimental results and modeling of bubble contribution to transfer. J. Geophys. Res., 88, 707724, doi:10.1029/JC088iC01p00707.

    • Search Google Scholar
    • Export Citation
  • Mueller, J., and F. Veron, 2009a: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, doi:10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Mueller, J., and F. Veron, 2009b: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372, doi:10.1175/2009JPO4113.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, M., W. Choi, and Z. Tian, 2013: Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech., 45, 115145, doi:10.1146/annurev-fluid-011212-140721.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., F. L. Posner, and J. P. Hansen, 2001: High range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: Surface impulse and wave energy dissipation rates. J. Phys. Oceanogr., 31, 450460, doi:10.1175/1520-0485(2001)031<0450:HRRRMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Portilla, J., F. J. Ocampo-Torres, and J. Monbaliu, 2009: Spectral partitioning and identification of wind sea and swell. J. Atmos. Oceanic Technol., 26, 107122, doi:10.1175/2008JTECHO609.1.

    • Search Google Scholar
    • Export Citation
  • Reul, N., and B. Chapron, 2003: A model of sea-foam thickness distribution for passive microwave remote sensing applications. J. Geophys. Res., 108, 3321, doi:10.1029/2003JC001887.

    • Search Google Scholar
    • Export Citation
  • Reul, N., H. Branger, and J.-P. Giovanangeli, 2008: Air flow structure over short-gravity breaking water waves. Bound.-Layer Meteor., 126, 477505, doi:10.1007/s10546-007-9240-3.

    • Search Google Scholar
    • Export Citation
  • Romero, L., W. K. Melville, and J. Kleiss, 2012: Spectral energy dissipation due to surface-wave breaking. J. Phys. Oceanogr., 42, 14211444, doi:10.1175/JPO-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., and J. Thomson, 2015: Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res. Oceans., 120, 83468363, doi:10.1002/2015JC011196.

    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., J. Thomson, and J. R. Gemmrich, 2014: Wave breaking dissipation in a young wind sea. J. Phys. Oceanogr., 44, 104127, doi:10.1175/JPO-D-12-0237.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, doi:10.1146/annurev-fluid-121108-145541.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, doi:10.1002/grl.50584.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., and Coauthors, 1996: Estimates of kinetic energy dissipation under surface waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thais, L., and J. Magnaudet, 1996: Turbulent structure beneath surface gravity waves sheared by the wind. J. Fluid Mech., 328, 313344, doi:10.1017/S0022112096008749.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., and A. Jessup, 2009: A Fourier-based method for the distribution of breaking crests from video observations. J. Atmos. Oceanic Technol., 26, 16631671, doi:10.1175/2009JTECHO622.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., J. R. Gemmrich, and A. T. Jessup, 2009: Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett., 36, L11601, doi:10.1029/2009GL038201.

    • Search Google Scholar
    • Export Citation
  • Tian, Z., M. Perlin, and W. Choi, 2010: Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech., 655, 217257, doi:10.1017/S0022112010000832.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., J. Gemmrich, and H. Czerski, 2012: Reduced upper ocean turbulence and changes to bubble size distributions during large downward heat flux events. J. Geophys. Res., 117, C00H16, doi:10.1029/2011JC007308.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 2565.

    • Search Google Scholar
    • Export Citation
  • Veron, F., G. Saxena, and S. Misra, 2007: Measurements of viscous tangential stresses in the separated airflow above wind waves. Geophys. Res. Lett., 34, L19603, doi:10.1029/2007GL031242.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., 1993: Bubbles and the air–sea transfer velocity of gases. Atmos.–Ocean, 31, 517540, doi:10.1080/07055900.1993.9649484.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., 2005: Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 8794, doi:10.1111/j.1600-0889.2005.00139.x.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., M. L. Banner, H. Schultz, J. R. Gemmrich, R. P. Morison, D. A. LeBel, and T. Dickey, 2012: An overview of sea state conditions and air–sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, doi:10.1029/2011JC007336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 81 14
PDF Downloads 152 40 10