Turning Ocean Mixing Upside Down

Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
,
Ali Mashayek Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ali Mashayek in
Current site
Google Scholar
PubMed
Close
,
Trevor J. McDougall School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Trevor J. McDougall in
Current site
Google Scholar
PubMed
Close
,
Maxim Nikurashin Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and ARC Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia

Search for other papers by Maxim Nikurashin in
Current site
Google Scholar
PubMed
Close
, and
Jean-Michael Campin Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Jean-Michael Campin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However, the observational evidence that the strong turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom boundary than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal waters. Using a combination of theoretical ideas and numerical models, it is argued that abyssal waters upwell along weakly stratified boundary layers, where small-scale mixing of density decreases to zero to satisfy the no density flux condition at the ocean bottom. The abyssal ocean meridional overturning circulation is the small residual of a large net sinking of waters, driven by small-scale mixing in the stratified interior above the bottom boundary layers, and a slightly larger net upwelling, driven by the decay of small-scale mixing in the boundary layers. The crucial importance of upwelling along boundary layers in closing the abyssal overturning circulation is the main finding of this work.

Corresponding author address: Raffaele Ferrari, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: rferrari@mit.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However, the observational evidence that the strong turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom boundary than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal waters. Using a combination of theoretical ideas and numerical models, it is argued that abyssal waters upwell along weakly stratified boundary layers, where small-scale mixing of density decreases to zero to satisfy the no density flux condition at the ocean bottom. The abyssal ocean meridional overturning circulation is the small residual of a large net sinking of waters, driven by small-scale mixing in the stratified interior above the bottom boundary layers, and a slightly larger net upwelling, driven by the decay of small-scale mixing in the boundary layers. The crucial importance of upwelling along boundary layers in closing the abyssal overturning circulation is the main finding of this work.

Corresponding author address: Raffaele Ferrari, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: rferrari@mit.edu

This article is included in the Ocean Turbulence Special Collection.

Save
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 19711979, doi:10.1029/JC083iC04p01971.

  • Bouffard, D., and L. Boegman, 2013: A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans, 61–62, 1434, doi:10.1016/j.dynatmoce.2013.02.002.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and J. L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, G. A. J. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, doi:10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: Oceanography: What goes down must come up. Nature, 513, 179180, doi:10.1038/513179a.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, doi:10.1038/35044048.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393, doi:10.1357/002224084788502756.

  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95, 31813188, doi:10.1029/JC095iC03p03181.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, doi:10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass transformation and the surface buoyancy flux with application to Phillip’s Red Sea model. J. Phys. Oceanogr., 25, 16961705, doi:10.1175/1520-0485(1995)025<1696:TRBWMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35/2004, 52 pp.

  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline. J. Geophys. Res., 92, 52495286, doi:10.1029/JC092iC05p05249.

  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, doi:10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Karimpour, F., and S. K. Venayagamoorthy, 2014: A simple turbulence model for stably stratified wall-bounded flows. J. Geophys. Res. Oceans, 119, 870880, doi:10.1002/2013JC009332.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Quantifying the consequences of the ill-defined nature of neutral surfaces. J. Phys. Oceanogr., 40, 18661880, doi:10.1175/2009JPO4212.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, doi:10.1175/JPO-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through southern ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. R. Peltier, 2013a: Shear-induced mixing in geophysical flows: Does the route to turbulence matter to its efficiency? J. Fluid Mech., 725, 216261, doi:10.1017/jfm.2013.176.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. R. Peltier, 2013b: Time-dependent, non-monotonic mixing in stratified turbulent shear flows: Implications for oceanographic estimates of buoyancy flux. J. Fluid Mech., 736, 570593, doi:10.1017/jfm.2013.551.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, M. Nikurashin, and W. R. Peltier, 2015: Influence of enhanced abyssal diapycnal mixing on ocean stratification and overturning circulation. J. Phys. Oceanogr., 45, 25802597, doi:10.1175/JPO-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14, 15771589, doi:10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1989: Dianeutral advection. Parameterization of Small-Scale Processes: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 289–315.

  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2012: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, A. Adcroft, M. Nikurashin, and S. Legg, 2015: Energy flux into internal lee waves: Sensitivity to future climate changes using linear theory and a climate model. J. Climate, 28, 23652384, doi:10.1175/JCLI-D-14-00432.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, 1993: 5-minute Gridded Global Relief Data (ETOPO5). National Geophysical Data Center, doi:10.7289/V5D798BF.

  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Nurser, A., and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part II: Relating to the residual streamfunction in Eulerian space. J. Phys. Oceanogr., 34, 27402755, doi:10.1175/JPO2650.1.

    • Search Google Scholar
    • Export Citation
  • Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nat. Commun., 4, 18, doi:10.1038/ncomms3419.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and C. P. Caulfield, 2003: Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech., 35, 135167, doi:10.1146/annurev.fluid.35.101101.161144.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Smith, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1993: Oceanic general circulation: Wave and advection dynamics. Modelling Oceanic Climate Interactions, J. Willebrand and D. L. T. Anderson, Eds., NATO ASI Subseries I, Vol. 11, Springer-Verlag, 67–149.

  • Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Search Google Scholar
    • Export Citation
  • Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 35783595, doi:10.1175/1520-0485(2002)032<3578:TLODMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2001: Large-scale circulations forced by localized mixing over a sloping bottom. J. Phys. Oceanogr., 31, 23692384, doi:10.1175/1520-0485(2001)031<2369:LSCFBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1958: The abyssal circulation. Deep-Sea Res., 5, 8082, doi:10.1016/S0146-6291(58)80014-4.

  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, doi:10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., A. B. Arons, and A. J. Faller, 1958: Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10A, 179187, doi:10.1111/j.2153-3490.1958.tb02003.x.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Academic Press, 555 pp.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the layers produced by rapidly oscillating a vertical grid in a uniformly stratified fluid. J. Fluid Mech., 124, 391409, doi:10.1017/S0022112082002559.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, M., L. C. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381, doi:10.1175/JPO2773.1.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., and P. J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8, 557570, doi:10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, doi:10.1016/0011-7471(70)90022-7.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general ocean circulation. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2009: The global zonally integrated ocean circulation, 1992–2006: Seasonal and decadal variability. J. Phys. Oceanogr., 39, 351368, doi:10.1175/2008JPO4012.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2266 743 83
PDF Downloads 1950 601 79