Investigating the Eddy Diffusivity Concept in the Coastal Ocean

I. I. Rypina Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by I. I. Rypina in
Current site
Google Scholar
PubMed
Close
,
A. Kirincich Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by A. Kirincich in
Current site
Google Scholar
PubMed
Close
,
S. Lentz Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by S. Lentz in
Current site
Google Scholar
PubMed
Close
, and
M. Sundermeyer University of Massachusetts Dartmouth, New Bedford, Massachusetts

Search for other papers by M. Sundermeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper aims to test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha’s Vineyard, Massachusetts. Specifically, this study investigates how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and underresolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu

Abstract

This paper aims to test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha’s Vineyard, Massachusetts. Specifically, this study investigates how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and underresolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu
Save
  • Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, doi:10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, doi:10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separation in the Gulf of Mexico. J. Phys. Oceanogr., doi:10.1175/JPO-D-15-0127.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and Coauthors, 2014: Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea. J. Geophys. Res. Oceans, 119, 14451464, doi:10.1002/2013JC009351.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. L. McClean, S. Gille, and A. Griesel, 2014: Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model. J. Phys. Oceanogr., 44, 21912211, doi:10.1175/JPO-D-13-0258.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38, 531571, doi:10.1016/S0198-0149(12)80023-9.

  • Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, J. H. LaCasce, and M. E. Maltrud, 2010: Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model. J. Geophys. Res., 115, C06006, doi:10.1029/2009JC005821.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., I. I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr., 45, 778791, doi:10.1175/JPO-D-14-0164.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2016: The occurrence, drivers, and implications of submesoscale eddies on the Martha’s Vineyard inner shelf. J. Phys. Oceanogr., doi: 10.1175/JPO-D-15-0191.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., T. de Paolo, and E. Terrill, 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, doi:10.1175/JTECH-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., S. Lentz, J. Farrar, and N. Ganju, 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr., 43, 19401958, doi:10.1175/JPO-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, doi:10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, doi:10.1357/002224003322201205.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., P. Poulain, P. Forget, A. Griffa, Y. Barbin, J. Gaggelli, J. C. De Maistre, and M. Rixen, 2009: Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J. Mar. Syst., 78, S79S89, doi:10.1016/j.jmarsys.2009.01.012.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in the area coordinate. J. Atmos. Sci., 53, 15241537, doi:10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 2001: A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci., 58, 36853701, doi:10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, C., P. White, L. Washburn, E. Terrill, B. Emery, and M. Otero, 2007: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666680, doi:10.1175/JTECH1998.1.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagram. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, doi:10.1016/0011-7471(71)90046-5.

  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., R. Gerin, and E. Mauri, 2009: Wind effects on drogued and undrogued drifters in the eastern Mediterranean. J. Atmos. Oceanic Technol., 26, 11441156, doi:10.1175/2008JTECHO618.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion on a distance-neighbour graph. Proc. Roy. Soc. London, A110, 709737, doi:10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, J. Pullen, J. Levin, and A. Gordon, 2010: Chaotic advection in an archipelago. J. Phys. Oceanogr., 40, 19882006, doi:10.1175/2010JPO4336.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. Berloff, and L. J. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. R. Kirincich, R. Limeburner, and I. A. Udovydchenkov, 2014: Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Oceanic Technol., 31, 945966, doi:10.1175/JTECH-D-13-00146.1.

    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Stewart, R., and J. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M., and J. Ledwell, 2001: Lateral dispersion over the continental shelf: Analysis of dye release experiments. J. Geophys. Res., 106, 96039621, doi:10.1029/2000JC900138.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2004: Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109, C05015, doi:10.1029/2003JC002241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 127 21
PDF Downloads 328 85 11