Estimates of Eddy Heat Flux Crossing the Antarctic Circumpolar Current from Observations in Drake Passage

D. Randolph Watts Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by D. Randolph Watts in
Current site
Google Scholar
PubMed
Close
,
Karen L. Tracey Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Karen L. Tracey in
Current site
Google Scholar
PubMed
Close
,
Kathleen A. Donohue Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Kathleen A. Donohue in
Current site
Google Scholar
PubMed
Close
, and
Teresa K. Chereskin Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Teresa K. Chereskin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 4-yr measurements by current- and pressure-recording inverted echo sounders in Drake Passage produced statistically stable eddy heat flux estimates. Horizontal currents in the Antarctic Circumpolar Current (ACC) turn with depth when a depth-independent geostrophic current crosses the upper baroclinic zone. The dynamically important divergent component of eddy heat flux is calculated. Whereas full eddy heat fluxes differ greatly in magnitude and direction at neighboring locations within the local dynamics array (LDA), the divergent eddy heat fluxes are poleward almost everywhere. Case studies illustrate baroclinic instability events that cause meanders to grow rapidly. In the southern passage, where eddy variability is weak, heat fluxes are weak and not statistically significant. Vertical profiles of heat flux are surface intensified with ~50% above 1000 m and uniformly distributed with depth below. Summing poleward transient eddy heat transport across the LDA of −0.010 ± 0.005 PW with the stationary meander contribution of −0.004 ± 0.001 PW yields −0.013 ± 0.005 PW. A comparison metric, −0.4 PW, represents the total oceanic heat loss to the atmosphere south of 60°S. Summed along the circumpolar ACC path, if the LDA heat flux occurred at six “hot spots” spanning similar or longer path segments, this could account for 20%–70% of the metric, that is, up to −0.28 PW. The balance of ocean poleward heat transport along the remaining ACC path should come from weak eddy heat fluxes plus mean cross-front temperature transports. Alternatively, the metric −0.4 PW, having large uncertainty, may be high.

Corresponding author address: D. Randolph Watts, Graduate School of Oceanography, University of Rhode Island, South Ferry Rd., Narragansett, RI 02882. E-mail: randywatts@uri.edu

Abstract

The 4-yr measurements by current- and pressure-recording inverted echo sounders in Drake Passage produced statistically stable eddy heat flux estimates. Horizontal currents in the Antarctic Circumpolar Current (ACC) turn with depth when a depth-independent geostrophic current crosses the upper baroclinic zone. The dynamically important divergent component of eddy heat flux is calculated. Whereas full eddy heat fluxes differ greatly in magnitude and direction at neighboring locations within the local dynamics array (LDA), the divergent eddy heat fluxes are poleward almost everywhere. Case studies illustrate baroclinic instability events that cause meanders to grow rapidly. In the southern passage, where eddy variability is weak, heat fluxes are weak and not statistically significant. Vertical profiles of heat flux are surface intensified with ~50% above 1000 m and uniformly distributed with depth below. Summing poleward transient eddy heat transport across the LDA of −0.010 ± 0.005 PW with the stationary meander contribution of −0.004 ± 0.001 PW yields −0.013 ± 0.005 PW. A comparison metric, −0.4 PW, represents the total oceanic heat loss to the atmosphere south of 60°S. Summed along the circumpolar ACC path, if the LDA heat flux occurred at six “hot spots” spanning similar or longer path segments, this could account for 20%–70% of the metric, that is, up to −0.28 PW. The balance of ocean poleward heat transport along the remaining ACC path should come from weak eddy heat fluxes plus mean cross-front temperature transports. Alternatively, the metric −0.4 PW, having large uncertainty, may be high.

Corresponding author address: D. Randolph Watts, Graduate School of Oceanography, University of Rhode Island, South Ferry Rd., Narragansett, RI 02882. E-mail: randywatts@uri.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., D. R. Watts, and K. A. Donohue, 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, doi:10.1175/JPO-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1979: Poleward heat flux and conversion of available potential energy in Drake Passage. J. Mar. Res., 37, 122.

  • Bryden, H. L., and R. Heath, 1985: Energetic eddies at the northern edge of the Antarctic Circumpolar Current in the southwest Pacific. Prog. Oceanogr., 14, 6587, doi:10.1016/0079-6611(85)90006-0.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., K. A. Donohue, D. R. Watts, K. L. Tracey, Y. Firing, and A. L. Cutting, 2009: Strong bottom currents and cyclogenesis in Drake Passage. Geophys. Res. Lett., 36, L23602, doi:10.1029/2009GL040940.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., K. A. Donohue, and D. R. Watts, 2012: cDrake: Dynamics and transport of the Antarctic Circumpolar Current in Drake Passage. Oceanography, 25, 134135, doi:10.5670/oceanog.2012.86.

    • Search Google Scholar
    • Export Citation
  • Chidichimo, M. P., K. A. Donohue, D. R. Watts, and K. L. Tracey, 2014: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage. J. Phys. Oceanogr., 44, 18291853, doi:10.1175/JPO-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, doi:10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., S. Alderson, B. King, and M. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • de Souza, J. M. A. C., A. de Moraes Paiva, and K. von Schuckmann, 2013: New estimates for the heat flux across the polar front: Spatial and temporal variability in recent years. Antarct. Sci., 25, 433444, doi:10.1017/S0954102012001113.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085, doi:10.1016/0198-0149(81)90048-0.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, K. L. Tracey, A. D. Greene, and M. Kennelly, 2010: Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J. Atmos. Oceanic Technol., 27, 507527, doi:10.1175/2009JTECHO686.1.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, P. Hamilton, R. Leben, and M. Kennelly, 2016: Loop current eddy formation and baroclinic instability. Dyn. Atmos. Oceans, doi:10.1016/j.dynatmoce.2016.01.004, in press.

    • Search Google Scholar
    • Export Citation
  • Eden, C., R. J. Greatbatch, and D. Olbers, 2007: Interpreting eddy fluxes. J. Phys. Oceanogr., 37, 12821296, doi:10.1175/JPO3050.1.

  • Ferrari, R., C. Provost, A. Renault, N. Sennéchael, N. Barré, Y.-H. Park, and J. H. Lee, 2012: Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin. J. Geophys. Res., 117, C12024, doi:10.1029/2012JC008264.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., C. Provost, Y.-H. Park, N. Sennéchael, Z. Koenig, H. Sekma, G. Garric, and R. Bourdallé-Badie, 2014: Heat fluxes across the Antarctic Circumpolar Current in Drake Passage: Mean flow and eddy contributions. J. Geophys. Res. Oceans, 119, 63816402, doi:10.1002/2014JC010201.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., T. K. Chereskin, and M. R. Mazloff, 2011: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity measurements. J. Geophys. Res., 116, C08015, doi:10.1029/2011JC006999.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., T. K. Chereskin, D. R. Watts, K. L. Tracey, and C. Provost, 2014: Computation of geostrophic streamfunction, its derivatives, and error estimates from an array of CPIES in Drake Passage. J. Atmos. Oceanic Technol., 31, 656680, doi:10.1175/JTECH-D-13-00142.1.

    • Search Google Scholar
    • Export Citation
  • Foppert, A., K. A. Donohue, and D. R. Watts, 2016: The Polar Front in Drake Passage: A composite-mean stream-coordinate view. J. Geophys. Res. Oceans, 121, 17711788, doi:10.1002/2015JC011333.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1975: General ocean circulation. Numerical Models of Ocean Circulation, National Academy of Sciences, 39–53.

  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. 2nd ed. Academic Press, 391 pp.

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and A. J. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modeling the Global Ocean, G. Siedler, J. Gould, and J. Church, Eds., Academic Press, 317–336.

  • Lenn, Y.-D., T. K. Chereskin, J. Sprintall, and E. Firing, 2007: Mean jets, mesoscale variability and eddy momentum fluxes in the surface layer of the Antarctic Circumpolar Current in Drake Passage. J. Mar. Res., 65, 2758, doi:10.1357/002224007780388694.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., T. K. Chereskin, J. Sprintall, and J. L. McClean, 2011: Near-surface eddy heat and momentum fluxes in the Antarctic Circumpolar Current in Drake Passage. J. Phys. Oceanogr., 41, 13851407, doi:10.1175/JPO-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A., and M. Baringer, 2013: Observed ocean transport of heat. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Elsevier, 759–785.

  • Marshall, J. C., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and D. R. Watts, 2000: Vertical structure and transport on a transect across the North Atlantic Current near 42°N: Time series and mean. J. Geophys. Res., 105, 21 86921 891, doi:10.1029/2000JC900097.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., S. J. Worley, and T. Whitworth III, 1985: Methods for making point estimates of eddy heat flux as applied to the Antarctic Circumpolar Current. J. Geophys. Res., 90, 33053324, doi:10.1029/JC090iC02p03305.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., V. Gouretski, G. Seiß, and J. Schröter, 1992: Hydrographic Atlas of the Southern Ocean. Alfred Wegener Institute, 17 pp.

  • Peixóto, J., and A. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peña Molino, B., S. R. Rintoul, and M. R. Mazloff, 2014: Barotropic and baroclinic contributions to along-stream and across-stream transport in the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 119, 80118028, doi:10.1002/2014JC010020.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryan, W. B. F., and Coauthors, 2009: Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst., 10, Q03014, doi:10.1029/2008GC002332.

    • Search Google Scholar
    • Export Citation
  • Savidge, D. K., and J. M. Bane, 1999: Cyclogenesis in the deep ocean beneath the Gulf Stream. J. Geophys. Res., 104, 18 11118 126, doi:10.1029/1999JC900132.

    • Search Google Scholar
    • Export Citation
  • Sekma, H., Y.-H. Park, and F. Vivier, 2013: Time-mean flow as the prevailing contribution to the poleward heat flux across the southern flank of the Antarctic Circumpolar Current: A case study in the Fawn Trough, Kerguelen Plateau. J. Phys. Oceanogr., 43, 583601, doi:10.1175/JPO-D-12-0125.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2008: Vorticity and divergence of surface velocities near shore. J. Phys. Oceanogr., 38, 14501468, doi:10.1175/2007JPO3865.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and D. R. Watts, 2002: Heat flux carried by the Antarctic Circumpolar Current mean flow. J. Geophys. Res., 107, 3119, doi:10.1029/2001JC001187.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., D. R. Watts, K. A. Donohue, and H. Ichikawa, 2012: Propagation of Kuroshio Extension meanders between 143° and 149°E. J. Phys. Oceanogr., 42, 581601, doi:10.1175/JPO-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., K. A. Donohue, D. R. Watts, and T. Chereskin, 2013: cDrake CPIES data report November 2007 to December 2011. University of Rhode Island GSO Tech. Rep. 2013–01, 80 pp. [Available online at http://digitalcommons.uri.edu/physical_oceanography_techrpts/4/.]

  • Volkov, D. L., L.-L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801, doi:10.1007/s10236-010-0288-0.

    • Search Google Scholar
    • Export Citation
  • Walkden, G. J., K. J. Heywood, and D. P. Stevens, 2008: Eddy heat fluxes from direct current measurements of the Antarctic polar front in Shag Rocks Passage. Geophys. Res. Lett., 35, L06602, doi:10.1029/2007GL032767.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., C. Sun, and S. Rintoul, 2001: A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantarctic Front. J. Phys. Oceanogr., 31, 21862209, doi:10.1175/1520-0485(2001)031<2186:ATDGEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 542 184 34
PDF Downloads 469 154 29