• Amundson, J. M., M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. Motyka, 2010: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115, F01005, doi:10.1029/2009JF001405.

    • Search Google Scholar
    • Export Citation
  • Andersen, M. L., and Coauthors, 2010: Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. J. Geophys. Res., 115, F04041, doi:10.1029/2010JF001760.

    • Search Google Scholar
    • Export Citation
  • Andres, M., A. Silvano, F. Straneo, and D. R. Watts, 2015: Icebergs and sea ice detected with inverted echo sounders. J. Atmos. Oceanic Technol., 32, 10421057, doi:10.1175/JTECH-D-14-00161.1.

    • Search Google Scholar
    • Export Citation
  • Arneborg, L., 2004: Turnover times for the water above sill level in Gullmar Fjord. Cont. Shelf Res., 24, 443460, doi:10.1016/j.csr.2003.12.005.

    • Search Google Scholar
    • Export Citation
  • Bamber, J., M. van den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi:10.1029/2012GL052552.

    • Search Google Scholar
    • Export Citation
  • Bartholomaus, T. C., C. F. Larsen, and S. O’Neel, 2013: Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett., 380, 2130, doi:10.1016/j.epsl.2013.08.014.

    • Search Google Scholar
    • Export Citation
  • Beaird, N., F. Straneo, and W. Jenkins, 2015: Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett., 42, 77057713, doi:10.1002/2015GL065003.

    • Search Google Scholar
    • Export Citation
  • Bendtsen, J., J. Mortensen, and K. Lennert, 2015: Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge. Geophys. Res. Lett., 42, 40894095, doi:10.1002/2015GL063846.

    • Search Google Scholar
    • Export Citation
  • Bevan, S. L., A. Luckman, S. A. Khan, and T. Murray, 2015: Seasonal dynamic thinning at Helheim Glacier. Earth Planet. Sci. Lett., 415, 4753, doi:10.1016/j.epsl.2015.01.031.

    • Search Google Scholar
    • Export Citation
  • Carroll, D., D. A. Sutherland, E. L. Shroyer, J. D. Nash, G. A. Catania, and L. A. Stearns, 2015: Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr., 45, 21692185, doi:10.1175/JPO-D-15-0033.1.

    • Search Google Scholar
    • Export Citation
  • Christoffersen, P., R. Mugford, K. Heywood, I. Joughin, J. Dowdeswell, J. Syvitski, A. Luckman, and T. Benham, 2011: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5, 701714, doi:10.5194/tc-5-701-2011.

    • Search Google Scholar
    • Export Citation
  • Chu, V. W., 2014: Greenland ice sheet hydrology: A review. Prog. Phys. Geogr., 38, 1954, doi:10.1177/0309133313507075.

  • Enderlin, E. M., and I. M. Howat, 2013: Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010). J. Glaciol., 59, 6775, doi:10.3189/2013JoG12J049.

    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., and G. Hamilton, 2014: Estimates of iceberg submarine melting from high-resolution digital elevation models: application to Sermilik Fjord, East Greenland. J. Glaciol., 60, 10841092, doi:10.3189/2014JoG14J085.

    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. Van Angelen, and M. R. van den Broeke, 2014: An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866872, doi:10.1002/2013GL059010.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., and H. Freeland, 1983: The physical oceanography of fjords. Prog. Oceanogr., 12, 147219, doi:10.1016/0079-6611(83)90004-6.

    • Search Google Scholar
    • Export Citation
  • Foga, S., L. A. Stearns, and C. J. van der Veen, 2014: Application of satellite remote sensing techniques to quantify terminus and ice mélange behavior at Helheim Glacier, East Greenland. Mar. Technol. Soc. J., 48, 8191, doi:10.4031/MTSJ.48.5.3.

    • Search Google Scholar
    • Export Citation
  • Fried, M. J., G. A. Catania, and T. C. Bartholomaus, 2015: Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42, 9328–9336, doi:10.1002/2015GL065806.

    • Search Google Scholar
    • Export Citation
  • Gade, H., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and D. K. Ralston, 2011: The dynamics of strongly stratified estuaries. Water and Fine Sediment Circulation, Vol. 2, Treatise on Estuarine and Coastal Science, R. J. Uncles and S. G. Monismith, Eds., Elsevier, 37–51, doi:10.1016/B978-0-12-374711-2.00206-0.

  • Gladish, C. V., and D. M. Holland, 2015: Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of Ilulissat Icefjord waters, 2001–14. J. Phys. Oceanogr., 45, 332, doi:10.1175/JPO-D-14-0044.1.

    • Search Google Scholar
    • Export Citation
  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 47014717, doi:10.1175/2011JCLI4113.1.

    • Search Google Scholar
    • Export Citation
  • Harden, B. E., F. Straneo, and D. Sutherland, 2014: Moored observations of synoptic and seasonal variability in the East Greenland coastal current. J. Geophys. Res. Oceans, 119, 88388857, doi:10.1002/2014JC010134.

    • Search Google Scholar
    • Export Citation
  • Hasholt, B., B. U. Hansen, O. Humlum, and S. H. Mernild, 2004: Meteorological stations at the Sermilik Station, Southeast Greenland: Physical environment and meteorological observations 2002. Dan. J. Geogr., 104, 4758, doi:10.1080/00167223.2004.10649518.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664, doi:10.1038/ngeo316.

    • Search Google Scholar
    • Export Citation
  • Howat, I. M., I. Joughin, and T. A. Scambos, 2007: Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 15591561, doi:10.1126/science.1138478.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., T. Murray, F. R. Cottier, K. Scharrer, T. J. Boyd, K. J. Heywood, and S. L. Bevan, 2014: Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res. Oceans, 119, 631645, doi:10.1002/2013JC009295.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., 2016: Dynamics of Greenland’s glacial fjords. Ph.D. thesis, Massachusetts Institute of Technology /Woods Hole Oceanographic Institution, 172 pp., doi:10.1575/1912/7965.

  • Jackson, R. H., F. Straneo, and D. A. Sutherland, 2014: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci., 7, 503508, doi:10.1038/ngeo2186.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1999: The impact of melting ice on ocean waters. J. Phys. Oceanogr., 29, 23702381, doi:10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., A. Münchow, K. K. Falkner, and H. Melling, 2011: Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res., 116, C01003, doi:10.1029/2010JC006519.

    • Search Google Scholar
    • Export Citation
  • Knudsen, M., 1900: Ein hydrographischer lehrsatz. Ann. Hydrogr. Marit. Meteor., 28, 316320.

  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

  • Lerczak, J. A., W. R. Geyer, and R. Chant, 2006: Mechanisms driving the time-dependent salt flux in a partially stratified estuary. J. Phys. Oceanogr., 36, 22962311, doi:10.1175/JPO2959.1.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and W. R. Geyer, 2010: Advances in estuarine physics. Annu. Rev. Mar. Sci., 2, 3558, doi:10.1146/annurev-marine-120308-081015.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and N. S. Banas, 2011: Residual circulation, mixing, and dispersion. Water and Fine Sediment Circulation, Vol. 2, Treatise on Estuarine and Coastal Science, R. J. Uncles and S. G. Monismith, Eds., Elsevier, 75–89, doi:10.1016/B978-0-12-374711-2.00205-9.

  • Mernild, S. H., and Coauthors, 2010: Freshwater flux to Sermilik Fjord, SE Greenland. Cryosphere, 4, 453465, doi:10.5194/tc-4-453-2010.

    • Search Google Scholar
    • Export Citation
  • Moffat, C., 2014: Wind-driven modulation of warm water supply to a proglacial fjord, Jorge Montt Glacier, Patagonia. Geophys. Res. Lett., 41, 39433950, doi:10.1002/2014GL060071.

    • Search Google Scholar
    • Export Citation
  • Montgomery, R. B., 1974: Comments on “Seasonal variability of the Florida Current,” by Niiler and Richardson. J. Mar. Res., 32 (3), 533535.

    • Search Google Scholar
    • Export Citation
  • Moon, T., I. Joughin, B. Smith, M. R. Broeke, W. J. van de Berg, B. Noel, and M. Usher, 2014: Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216, doi:10.1002/2014GL061836.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., J. Bendtsen, K. Lennert, and S. Rysgaard, 2014: Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64 N). J. Geophys. Res. Earth Surf., 119, 25912603, doi:10.1002/2014JF003267.

    • Search Google Scholar
    • Export Citation
  • Motyka, R., L. Hunter, K. Echelmeyer, and C. Connor, 2003: Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36, 5765, doi:10.3189/172756403781816374.

    • Search Google Scholar
    • Export Citation
  • Motyka, R., W. P. Dryer, J. Amundson, M. Truffer, and M. Fahnestock, 2013: Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 51535158, doi:10.1002/grl.51011.

    • Search Google Scholar
    • Export Citation
  • Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin, 2009: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114, doi:10.1038/ngeo394.

    • Search Google Scholar
    • Export Citation
  • Nick, F. M., and Coauthors, 2012: The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol., 58, 229239, doi:10.3189/2012JoG11J242.

    • Search Google Scholar
    • Export Citation
  • Noel, B., W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke, 2015: Summer snowfall on the Greenland Ice Sheet: A study with the updated regional climate model RACMO2.3. Cryosphere Discuss., 9, 11771208, doi:10.5194/tcd-9-1177-2015.

    • Search Google Scholar
    • Export Citation
  • Oltmanns, M., F. Straneo, G. W. K. Moore, and S. H. Mernild, 2014: Strong downslope wind events in Ammassalik, Southeast Greenland. J. Climate, 27, 977993, doi:10.1175/JCLI-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., M. Koppes, and I. Velicogna, 2010: Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3, 187191, doi:10.1038/ngeo765.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Fenty, Y. Xu, and C. Cai, 2015: Undercutting of marine-terminating glaciers in West Greenland. Geophys. Res. Lett., 42, 59095917, doi:10.1002/2015GL064236.

    • Search Google Scholar
    • Export Citation
  • Schild, K. M., and G. S. Hamilton, 2013: Seasonal variations of outlet glacier terminus position in Greenland. J. Glaciol., 59, 759770, doi:10.3189/2013JoG12J238.

    • Search Google Scholar
    • Export Citation
  • Schjøth, F., C. S. Andresen, F. Straneo, T. Murray, K. Scharrer, and A. Korablev, 2012: Campaign to map the bathymetry of a major Greenland fjord. Eos, Trans. Amer. Geophys. Union, 93, 141142, doi:10.1029/2012EO140001.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, doi:10.1002/jgrc.20142.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Stearns, L., and G. Hamilton, 2007: Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophys. Res. Lett., 34, 55035508, doi:10.1029/2006GL028982.

    • Search Google Scholar
    • Export Citation
  • Stevens, L. A., F. Straneo, S. B. Das, A. J. Plueddemann, A. L. Kukulya, and M. Morlighem, 2015: Linking catchment-scale subglacial discharge to subsurface glacially modified waters near the front of a marine terminating outlet glacier using an autonomous underwater vehicle. Cryosphere Discuss., 9, 45834624, doi:10.5194/tcd-9-4583-2015.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 2012: Hydrodynamics and circulation of fjords. Encyclopedia of Lakes and Reservoirs, L. Bengtsson, R. W. Herschy, and R. W. Fairbridge, Eds., Springer, 327–344, doi:10.1007/978-1-4020-4410-6_247.

  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, doi:10.1038/nature12854.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, doi:10.1146/annurev-marine-010213-135133.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. G. Curry, D. A. Sutherland, G. S. Hamilton, C. Cenedese, K. Våge, and L. A. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327, doi:10.1038/ngeo1109.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D., and R. Pickart, 2008: The East Greenland coastal current: Structure, variability, and forcing. Prog. Oceanogr., 78, 5877, doi:10.1016/j.pocean.2007.09.006.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., and F. Straneo, 2012: Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol., 53, 5058, doi:10.3189/2012AoG60A050.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., F. Straneo, G. B. Stenson, F. J. M. Davidson, M. O. Hammill, and A. Rosing-Asvid, 2013: Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry. J. Geophys. Res. Oceans, 118, 847855, doi:10.1029/2012JC008354.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., G. E. Roth, and G. Hamilton, 2014a: Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters. Geophys. Res. Lett., 41, 84118420, doi:10.1002/2014GL062256.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., F. Straneo, and R. S. Pickart, 2014b: Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Oceans, 119, 37673791, doi:10.1002/2013JC009786.

    • Search Google Scholar
    • Export Citation
  • Van As, D., and Coauthors, 2014: Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). J. Glaciol., 60, 314322, doi:10.3189/2014JoG13J065.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986, doi:10.1126/science.1178176.

  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53, 229234, doi:10.3189/2012AoG60A139.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. Mar Flexas, 2013: Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653, doi:10.1002/grl.50825.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 600 313 12
PDF Downloads 454 245 13

Heat, Salt, and Freshwater Budgets for a Glacial Fjord in Greenland

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.

Denotes Open Access content.

Corresponding author address: Rebecca H. Jackson, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, 360 Woods Hole Rd., Woods Hole, MA 02543. E-mail: rjackson@whoi.edu

Abstract

In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.

Denotes Open Access content.

Corresponding author address: Rebecca H. Jackson, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, 360 Woods Hole Rd., Woods Hole, MA 02543. E-mail: rjackson@whoi.edu
Save