• Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 2171, doi:10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., S. D. Pierce, and R. M. Castelao, 2005: Time-dependent, wind-driven flow over a shallow midshelf submarine bank. J. Geophys. Res., 110, C10S05, doi:10.1029/2004JC002761.

    • Search Google Scholar
    • Export Citation
  • Beckenbach, E., and L. Washburn, 2004: Low-frequency waves in the Santa Barbara Channel observed by high-frequency radar. J. Geophys. Res., 109, C02010, doi:10.1029/2003JC001999.

    • Search Google Scholar
    • Export Citation
  • Cane, M., V. Kamenkovich, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28, 519526, doi:10.1175/1520-0485(1998)028<0519:OTUADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and J. A. Barth, 2006: The relative importance of wind strength and along-shelf bathymetric variations on the separation of a coastal upwelling jet. J. Phys. Oceanogr., 36, 412425, doi:10.1175/JPO2867.1.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, doi:10.1016/j.pocean.2008.10.013.

    • Search Google Scholar
    • Export Citation
  • Chant, R. J., 2004: Flow reversals during upwelling conditions on the New Jersey inner shelf. J. Geophys. Res., 109, C12S03, doi:10.1029/2003JC001941.

    • Search Google Scholar
    • Export Citation
  • Chapman, R. D., L. K. Shay, H. C. Graber, J. B. Edson, A. Karachintsev, C. L. Trump, and D. B. Ross, 1997: On the accuracy of HF radar surface current measurements: Intercomparisons with ship-based sensors. J. Geophys. Res., 102, 18 73718 748, doi:10.1029/97JC00049.

    • Search Google Scholar
    • Export Citation
  • Checkley, D. M., and J. A. Barth, 2009: Patterns and processes in the California Current System. Prog. Oceanogr., 83, 4964, doi:10.1016/j.pocean.2009.07.028.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • de Paolo, T., E. Terrill, and A. Kirincich, 2015: Improving SeaSonde radial velocity accuracy and variance using radial metrics. Proc.OCEANS 2015, Genoa, Italy, IEEE, doi:10.1109/OCEANS-Genova.2015.7271360.

  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Fewings, M., S. J. Lentz, and J. Fredericks, 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, doi:10.1175/2008JPO3990.1.

    • Search Google Scholar
    • Export Citation
  • Ganju, N. K., S. J. Lentz, A. R. Kirincich, and J. T. Farrar, 2011: Complex mean circulation over the inner-shelf south of Martha’s Vineyard revealed by observations and a high-resolution model. J. Geophys. Res., 116, C10036, doi:10.1029/2011JC007035.

    • Search Google Scholar
    • Export Citation
  • Geyer, R., and R. Signell, 1990: Measurements of tidal flow around a headland with a shipboard acoustic Doppler current profiler. J. Geophys. Res., 95, 31893197, doi:10.1029/JC095iC03p03189.

    • Search Google Scholar
    • Export Citation
  • Halle, C., 2008: HF radar processing using nearest-neighbor statistics. Bodega Marine Laboratory Tech. Rep., 26 pp.

  • Huthnance, J. M., 1984: Slope currents and JEBAR. J. Phys. Oceanogr., 14, 795810, doi:10.1175/1520-0485(1984)014<0795:SCA>2.0.CO;2.

  • Huyer, A., 1983: Coastal upwelling in the California Current System. Prog. Oceanogr., 12, 259284, doi:10.1016/0079-6611(83)90010-1.

  • Kaplan, D. M., and J. Largier, 2006: HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II, 53, 29062930, doi:10.1016/j.dsr2.2006.07.012.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 16391655, doi:10.1016/j.csr.2010.06.011.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., and J. A. Barth, 2009: Time-varying across-shelf Ekman transport and vertical eddy viscosity on the inner-shelf. J. Phys. Oceanogr., 39, 602620, doi:10.1175/2008JPO3969.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., J. A. Barth, B. A. Grantham, B. A. Menge, and J. Lubchenco, 2005: Wind-driven inner-shelf circulation off central Oregon during summer. J. Geophys. Res., 110, C10S03, doi:10.1029/2004JC002611.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., S. J. Lentz, and J. A. Barth, 2009: Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr., 39, 29422956, doi:10.1175/2009JPO4041.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., T. de Paolo, and E. Terrill, 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, doi:10.1175/JTECH-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., S. J. Lentz, J. T. Farrar, and N. K. Ganju, 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr., 43, 19401958, doi:10.1175/JPO-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., S. M. Glenn, and R. J. Chant, 2004: Seasonal current variability on the New Jersey inner shelf. J. Geophys. Res., 109, C07S07, doi:10.1029/2003JC001963.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., and S. D. Ross, 2010: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505, doi:10.1063/1.3278516.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, and J. Marsden, 2005: Pollution release tied to invariant manifolds: A case study for the coast of Florida. Physica D, 210, 120, doi:10.1016/j.physd.2005.06.023.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2001: The influence of stratification on the wind-driven cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr., 31, 27492760, doi:10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, doi:10.1146/annurev-marine-120709-142745.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. R. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, doi:10.1175/2008JPO3986.1.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., L. N. Thomas, and A. Tandon, 2008: Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, doi:10.1126/science.1152111.

    • Search Google Scholar
    • Export Citation
  • McCabe, R., P. MacCready, and G. Pawlak, 2006: Form drag due to flow separation at a headland. J. Phys. Oceanogr., 36, 21362152, doi:10.1175/JPO2966.1.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, doi:10.1126/science.1136256.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep.-Sea Res. Oceanogr. Abstr., 17, 445454, doi:10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Koçak, L. E. Brand, G. R. Halliwell, and L. K. Shay, 2006: Persistent transport barrier on the west Florida shelf. Geophys. Res. Lett., 33, L22603, doi:10.1029/2006GL027800.

    • Search Google Scholar
    • Export Citation
  • Parks, A. B., L. K. Shay, W. E. Johns, J. Martinez-Pedraja, and K.-W. Gurgel, 2009: HF radar observations of small-scale surface current variability in the Straits of Florida. J. Geophys. Res., 114, C08002, doi:10.1029/2008JC005025.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Robinson, I., 1981: Tidal vorticity and residual circulation. Deep-Sea Res., 28, 195212, doi:10.1016/0198-0149(81)90062-5.

  • Rudnick, D. L., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 20452048, doi:10.1029/2000GL012265.

  • Rypina, I. I., A. R. Kirincich, R. Limeburner, and I. A. Udovydchenkov, 2014: Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Oceanic Technol., 31, 945966, doi:10.1175/JTECH-D-13-00146.1.

    • Search Google Scholar
    • Export Citation
  • Sadarjoren, I. A., and F. H. Post, 2000: Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24, 333341, doi:10.1016/S0097-8493(00)00029-7.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Signell, R. P., and W. R. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 25612575, doi:10.1029/90JC02029.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., D. B. Haidvogel, and S. M. Glenn, 2001: Effects of topographic variability on the formation of upwelling centers off New Jersey: A theoretical model. J. Geophys. Res., 106, 92239240, doi:10.1029/2000JC000244.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep.- Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., 2003: Across-shelf transport on a continental shelf: Do across-shelf winds matter? J. Phys. Oceanogr., 33, 26752688, doi:10.1175/1520-0485(2003)033<2675:ATOACS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., and R. Garvine, 2003: Three-dimensional flow in a shallow coastal upwelling zone: Alongshore convergence and divergence on the New Jersey shelf. J. Phys. Oceanogr., 33, 21132125, doi:10.1175/1520-0485(2003)033<2113:TFIASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, J. B., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J., 2006: The summertime heat budget and circulation of southeast New England shelf waters. J. Phys. Oceanogr., 36, 19972011, doi:10.1175/JPO2968.1.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1995: Generation of mesoscale flows over the shelf and slope by shelf wave scattering in the presence of a stable, sheared mean current. J. Geophys. Res., 100, 67256742, doi:10.1029/94JC03339.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 92 6
PDF Downloads 128 56 4

The Occurrence, Drivers, and Implications of Submesoscale Eddies on the Martha’s Vineyard Inner Shelf

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.
Restricted access

Abstract

The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.

Corresponding author address: Anthony Kirincich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543. E-mail: akirincich@whoi.edu

Abstract

The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.

Corresponding author address: Anthony Kirincich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543. E-mail: akirincich@whoi.edu
Save