• Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Abramowitz, M., and I. A. Stegun, 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, 1046 pp.

  • Aoki, S., S. R. Rintoul, S. Ushio, S. Watanabe, and N. L. Bindoff, 2005: Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett., 32, L23601, doi:10.1029/2005GL024246.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., P. Gent, F. Bryan, A. Thompson, M. Long, and R. Abernathey, 2016: Southern Ocean overturning compensation in an eddy-resolving climate simulation. J. Phys. Oceanogr., 46, 15751592, doi:10.1175/JPO-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989, doi:10.5670/oceanog.1991.07.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography, 30, 10211039, doi:10.1002/2015PA002778.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., M. R. Mazloff, and L. D. Talley, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, doi:10.1175/2011JCLI3858.1.

    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of C of CO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., and Coauthors, 2015: Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 30573081, doi:10.1175/JPO-D-14-0240.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: An ocean tale of two climates: Modern and Last Glacial Maximum. Proc. Natl. Acad. Sci. USA, 111, 87538758, doi:10.1073/pnas.1323922111.

    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., S. R. Rintoul, J. A. Church, S. Aoki, S. Sokolov, M. A. Rosenberg, and M. Wakatsuchi, 2010: Strong export of Antarctic Bottom Water east of the Kerguelen Plateau. Nat. Geosci., 3, 327331, doi:10.1038/ngeo842.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model of the structure for the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Goodwin, P., 2012: An isopycnal box model with predictive deep-ocean structure for biogeochemical cycling applications. Ocean Modell., 51, 1936, doi:10.1016/j.ocemod.2012.04.005.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE Global Hydrographic Climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35/2004, 52 pp.

  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, doi:10.1175/2008JPO3878.1.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. F. Amos, and P. M. Bruchausen, 1970: Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res. Oceanogr. Abstr., 17, 935962, doi:10.1016/0011-7471(70)90046-X.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, doi:10.1175/JPO-D-15-0197.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 558 pp.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Lund, D. C., J. F. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, doi:10.1357/0022240973224373.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70, 331345, doi:10.1016/j.pocean.2006.07.004.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., R. Ferrari, and T. Schneider, 2013: The force balance of the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr., 43, 11931208, doi:10.1175/JPO-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660, doi:10.1175/1520-0485(1996)026<1655:IAATRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, doi:10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. P. Williams, and S. Bacon, 2014: The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog. Oceanogr., 120, 4178, doi:10.1016/j.pocean.2013.07.018.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., and Coauthors, 2013: Antarctic Bottom Water production by intense sea-ice formation in Cape Darnley polynya. Nat. Geosci., 6, 235240, doi:10.1038/ngeo1738.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and T. Whitworth, 2005: Southern Ocean. Vol. 1, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), WOCE International Project Office, 223 pp.

  • Orsi, A. H., T. Whitworth, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2006: The Antarctic Circumpolar Current in three dimensions. J. Phys. Oceanogr., 36, 651669, doi:10.1175/JPO2893.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1961: On the temperature, salinity and density differences between the Atlantic and Pacific Oceans in the upper kilometre. Deep-Sea Res., 7, 265275, doi:10.1016/0146-6313(61)90044-2.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/ngeo1523.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, doi:10.1175/JPO-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and A. Révelard, 2014: The Indonesian Throughflow response to Indo-Pacific climate variability. J. Geophys. Res. Oceans, 119, 11611175, doi:10.1002/2013JC009533.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, doi:10.1175/JPO-D-12-0205.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., R. Ferrari, and A. F. Thompson, 2014: On the importance of surface forcing in conceptual models of the deep ocean. J. Phys. Oceanogr., 44, 891899, doi:10.1175/JPO-D-13-0206.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. D. Talley, M. R. Mazloff, and I. Cerovečki, 2016: Zonal variations in the Southern Ocean heat budget. J. Climate, doi:10.1175/JCLI-D-15-0630.1, in press.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. N. Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. II, 42, 477500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2014: Salt feedback in the adiabatic overturning circulation. J. Phys. Oceanogr., 44, 11751194, doi:10.1175/JPO-D-13-0154.1.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1987: Indonesian Throughflow and the associated pressure gradient. J. Geophys. Res., 92, 12 94112 946, doi:10.1029/JC092iC12p12941.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 123 10
PDF Downloads 214 86 7

A Multibasin Residual-Mean Model for the Global Overturning Circulation

View More View Less
  • 1 Environmental Science and Engineering, California Institute of Technology, Pasadena, California
  • | 2 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 3 Environmental Science and Engineering, California Institute of Technology, Pasadena, California
Restricted access

Abstract

The ocean’s overturning circulation is inherently three-dimensional, yet modern quantitative estimates of the overturning typically represent the subsurface circulation as a two-dimensional, two-cell streamfunction that varies with latitude and depth only. This approach suppresses information about zonal mass and tracer transport. In this article, the authors extend earlier, zonally averaged overturning theory to explore the dynamics of a “figure-eight” circulation that cycles through multiple basins. A three-dimensional residual-mean model of the overturning circulation is derived and then simplified to a multibasin isopycnal box model to explore how stratification and diabatic water mass transformations in each basin depend on the basin widths and on deep and bottom-water formation in both hemispheres. The idealization to multiple, two-dimensional basins permits zonal mass transport along isopycnals in a Southern Ocean–like channel, while retaining the dynamical framework of residual-mean theory. The model qualitatively reproduces the deeper isopycnal surfaces in the Pacific Basin relative to the Atlantic. This supports a transfer of Antarctic Bottom Water from the Atlantic sector to the Pacific sector via the Southern Ocean, which subsequently upwells in the northern Pacific Basin. A solution for the full isopycnal structure in the Southern Ocean reproduces observed stratification differences between Atlantic and Pacific Basins and provides a scaling for the diffusive boundary layer in which the zonal mass transport occurs. These results are consistent with observational indications that North Atlantic Deep Water is preferentially transformed into Antarctic Bottom Water, which undermines the importance of an adiabatic, upper overturning cell in the modern ocean.

Corresponding author address: Andrew F. Thompson, Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd., MC 131-24, Pasadena, CA 91125. E-mail: andrewt@caltech.edu

Abstract

The ocean’s overturning circulation is inherently three-dimensional, yet modern quantitative estimates of the overturning typically represent the subsurface circulation as a two-dimensional, two-cell streamfunction that varies with latitude and depth only. This approach suppresses information about zonal mass and tracer transport. In this article, the authors extend earlier, zonally averaged overturning theory to explore the dynamics of a “figure-eight” circulation that cycles through multiple basins. A three-dimensional residual-mean model of the overturning circulation is derived and then simplified to a multibasin isopycnal box model to explore how stratification and diabatic water mass transformations in each basin depend on the basin widths and on deep and bottom-water formation in both hemispheres. The idealization to multiple, two-dimensional basins permits zonal mass transport along isopycnals in a Southern Ocean–like channel, while retaining the dynamical framework of residual-mean theory. The model qualitatively reproduces the deeper isopycnal surfaces in the Pacific Basin relative to the Atlantic. This supports a transfer of Antarctic Bottom Water from the Atlantic sector to the Pacific sector via the Southern Ocean, which subsequently upwells in the northern Pacific Basin. A solution for the full isopycnal structure in the Southern Ocean reproduces observed stratification differences between Atlantic and Pacific Basins and provides a scaling for the diffusive boundary layer in which the zonal mass transport occurs. These results are consistent with observational indications that North Atlantic Deep Water is preferentially transformed into Antarctic Bottom Water, which undermines the importance of an adiabatic, upper overturning cell in the modern ocean.

Corresponding author address: Andrew F. Thompson, Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd., MC 131-24, Pasadena, CA 91125. E-mail: andrewt@caltech.edu
Save