• Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, doi:10.1088/1748-9326/9/2/024014.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper stratosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 65626572, doi:10.1175/2011JCLI4160.1.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, doi:10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Owe, and A. Rango, 1983: Snow cover and temperature relationships in North America and Eurasia. J. Climate Appl. Meteor., 22, 460469, doi:10.1175/1520-0450(1983)022<0460:SCATRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, doi:10.1029/2012JD017777.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. F. Giulivi, 2004: Pacific decadal oscillation and sea level in the Japan/East Sea. Deep-Sea Res. I, 51, 653663, doi:10.1016/j.dsr.2004.02.005.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Kim, K., and J. Y. Chung, 1984: On the salinity-minimum and dissolved oxygen maximum layer in the East Sea (Sea of Japan). Ocean Hydrodynamics of the Japan and East China Sea, T. Ichiye, Ed., Elsevier Oceanography Series, Vol. 39, Elsevier, 55–65.

  • Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu, and Y. Volkov, 2004: Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61, 157174, doi:10.1016/j.pocean.2004.06.003.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., G. R. North, and J. Huang, 1996: EOFs of one-dimensional cyclostationary time series: Computations, examples, and stochastic modeling. J. Atmos. Sci., 53, 10071017, doi:10.1175/1520-0469(1996)053<1007:EOODCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, doi:10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409445, doi:10.1007/BF00142586.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Sako, and M. Nakamura, 2004: Interannual to interdecadal variability in the Japan Sea based on a new gridded upper water temperature dataset. J. Phys. Oceanogr., 34, 23822397, doi:10.1175/JPO2627.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influence on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and Coauthors, 2006: Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography, 19, 3249, doi:10.5670/oceanog.2006.42.

    • Search Google Scholar
    • Export Citation
  • Teague, W. J., G. A. Jacobs, D. S. Ko, T. Y. Tang, K.-I. Chang, and M.-S. Suk, 2003: Connectivity of the Taiwan, Cheju, and Korea Straits. Cont. Shelf Res., 23, 6377, doi:10.1016/S0278-4343(02)00150-4.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J, and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, doi:10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2004: ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957-2002. ECMWF Newsletter, Vol. 101, ECMWF, Reading, United Kingdom, 2–21.

  • van Loon, H., and J. C. Rogers, 1981: The Southern Oscillation. Part II: Associations with changes in the middle troposphere in the northern winter. Mon. Wea. Rev., 109, 11631168, doi:10.1175/1520-0493(1981)109<1163:TSOPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2010: Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 43–57.

  • Yoon, J. H., 1982: Numerical experiment on the circulation in the Japan Sea. Part I. Formation of the East Korean Warm Current. J. Oceanogr. Soc. Japan, 38, 4351, doi:10.1007/BF02110289.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., T. Awaji, and K. Akitomo, 1999: Formation and circulation processes of intermediate water in the Japan Sea. J. Phys. Oceanogr., 29, 17011722, doi:10.1175/1520-0485(1999)029<1701:FACPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yun, J.-Y., L. Magaard, K. Kim, C.-W. Shin, C. Kim, and S.-K. Byun, 2004: Spatial and temporal variability of the North Korean cold water leading to the near-bottom cold water intrusion in Korea Strait. Prog. Oceanogr., 60, 99131, doi:10.1016/j.pocean.2003.11.004.

    • Search Google Scholar
    • Export Citation
  • Yun, J.-Y., and Coauthors, 2005: A Report to the KORDI: Analysis of the Oceanic Characteristics in the Northern East Sea (in Korean). RIO-SNU, 281 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 43 8
PDF Downloads 48 24 4

ENSO Teleconnection to the Isopycnal Depth Fluctuations of the East/Japan Sea Intermediate Water in the Ulleung Basin during 1968–2002

View More View Less
  • 1 Research Institute of Oceanography, Seoul National University, Seoul, South Korea
  • | 2 School of Earth and Environmental Sciences, and Research Institute of Oceanography, Seoul National University, Seoul, South Korea
  • | 3 Department of Earth Science Education, Center for Education Research, and Research Institute of Oceanography, Seoul National University, Seoul, South Korea
  • | 4 Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii
Restricted access

Abstract

This study first detects the decadal variability in the depths of the East/Japan Sea (EJS) Intermediate Water (ESIW) using in situ observations and relates it to strong El Niño–Southern Oscillations (ENSOs). Using multitaper cross-spectrum and cyclostationary empirical orthogonal function analysis, this study found significant coherences at the 99% confidence level and opposite phases between Niño-3 and the ESIW isopycnal depths in the Ulleung Basin (UB) at a period of 14.1 yr during 1968–2002. This suggests a teleconnection between strong ENSOs and the ESIW, the cause of which is explored. When a strong El Niño (EN) develops, the Pacific–North American pattern is intensified by the EN-related Rossby wave interfering constructively with the climatological stationary wave. The amplified wave propagates upward into the stratosphere and breaks, weakening the polar vortex. The EN-related geopotential height increases over the pole with poleward converging air and decreases over the Yakutsk Basin (YB), indicating a negative northern annular mode with the south-to-north gradient balancing the easterly anomaly that responds to vortex weakening. The converged air at the pole warms adiabatically and raises the height as it sinks. This height distribution, including the east-to-west gradient balancing the southward flow, induces the polar vortex split into two with the colder one in the YB where the EJS is closer than from the pole. The EN-related northwesterly wind directing toward the EJS is also strong. Thus, the coldest air with negative wind stress curls reaches the EJS quickly and forms more ESIW, which converges into the UB, causing the observed decadal isopycnal fluctuations.

Corresponding author address: Jae-Yul Yun, Research Institute of Oceanography, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. E-mail: jaeyyun@snu.ac.kr

Abstract

This study first detects the decadal variability in the depths of the East/Japan Sea (EJS) Intermediate Water (ESIW) using in situ observations and relates it to strong El Niño–Southern Oscillations (ENSOs). Using multitaper cross-spectrum and cyclostationary empirical orthogonal function analysis, this study found significant coherences at the 99% confidence level and opposite phases between Niño-3 and the ESIW isopycnal depths in the Ulleung Basin (UB) at a period of 14.1 yr during 1968–2002. This suggests a teleconnection between strong ENSOs and the ESIW, the cause of which is explored. When a strong El Niño (EN) develops, the Pacific–North American pattern is intensified by the EN-related Rossby wave interfering constructively with the climatological stationary wave. The amplified wave propagates upward into the stratosphere and breaks, weakening the polar vortex. The EN-related geopotential height increases over the pole with poleward converging air and decreases over the Yakutsk Basin (YB), indicating a negative northern annular mode with the south-to-north gradient balancing the easterly anomaly that responds to vortex weakening. The converged air at the pole warms adiabatically and raises the height as it sinks. This height distribution, including the east-to-west gradient balancing the southward flow, induces the polar vortex split into two with the colder one in the YB where the EJS is closer than from the pole. The EN-related northwesterly wind directing toward the EJS is also strong. Thus, the coldest air with negative wind stress curls reaches the EJS quickly and forms more ESIW, which converges into the UB, causing the observed decadal isopycnal fluctuations.

Corresponding author address: Jae-Yul Yun, Research Institute of Oceanography, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. E-mail: jaeyyun@snu.ac.kr
Save