• Achuthavarier, D., V. Krishnamurthy, B. P. Kirtman, and B. Huang, 2012: Role of Indian Ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP climate forecast system. J. Climate, 25, 24902508, doi:10.1175/JCLI-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and Coauthors, 2013: Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change, 119, 147161, doi:10.1007/s10584-012-0603-5.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Chaudhari, C. Gnanaseelan, A. Parekh, A. S. Rao, P. Sreenivas, S. Pokhrel, and P. Singh, 2014: Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system. Climate Dyn., 42, 19251947, doi:10.1007/s00382-013-1826-5.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, S. Ojha, C. Gnanaseelan, and R. Kakatkar, 2016a: Impact of upper ocean processes and air–sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int. J. Climatol., 36, 188207, doi:10.1002/joc.4336.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., G. Srinivas, T. S. Fousiya, A. Parekh, C. Gnanaseelan, H. Seo, and J. A. MacKinnon, 2016b: Representation of Bay of Bengal upper-ocean salinity in general circulation models. Oceanography, 29, 3849, doi:10.5670/oceanog.2016.37.

    • Search Google Scholar
    • Export Citation
  • De, S., A. Hazra, and H. S. Chaudhari, 2016: Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects. Climate Dyn., 46, 11971222, doi:10.1007/s00382-015-2640-z.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., and D. M. Smith, 2010: Impact of atmosphere and sub‐surface ocean data on decadal climate prediction. Geophys. Res. Lett., 37, L02709, doi:10.1029/2009GL041609.

    • Search Google Scholar
    • Export Citation
  • Fousiya, T. S., A. Parekh, and C. Gnanaseelan, 2015: Interannual variability of upper ocean stratification in Bay of Bengal: Observational and modeling aspects. Theor. Appl. Climatol., doi:10.1007/s00704-015-1574-z, in press.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., and N. H. Naik, 2005: Evaluating the effect of interannual variations of surface chlorophyll on upper ocean temperature. J. Geophys. Res., 110, C07012, doi:10.1029/2004JC002779.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Goswami, B. B., M. S. Deshpande, P. Mukhopadhyay, S. K. Saha, A. S. Rao, R. Murthugudde, and B. N. Goswami, 2014: Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dyn., 43, 27252745, doi:10.1007/s00382-014-2089-5.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., 2012: Elements of the Modular Ocean Model (MOM). NOAA GFDL Ocean Group Tech. Rep. 7, 618 pp. [Available online at http://www.mom-ocean.org/web/docs/project/MOM5_elements.pdf.]

  • Griffies, S., M. J. Harrison, R. C. Pacanowski, and R. A. Anthony, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp. [Available online at https://www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.]

  • Hastenrath, S., and L. L. Greischar, 1989: Climatic Atlas of the Indian Ocean: Upper Ocean Structure. University of Wisconsin Press, 274 pp.

  • Hazra, A., H. S. Chaudhari, S. A. Rao, B. N. Goswami, A. Dhakate, S. Pokhrel, and S. K. Saha, 2015: Impact of revised cloud microphysical scheme in CFSv2 on the simulation of the Indian summer monsoon. Int. J. Climatol., 35, 47384755, doi:10.1002/joc.4320.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. W., S. Yang, J. P. Li, Y. Q. Li, H. R. Hu, and Y. Lian, 2013: Variability of the Indian Ocean SST and its possible impacts on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Climate Dyn., 41, 21992212, doi:10.1007/s00382-013-1934-2.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, doi:10.1029/2000JC000736.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., K. V. Ramesh, B. K. Samala, G. Meyers, J. M. Slingo, and M. J. Fennessy, 2006: Indian Ocean-monsoon coupled interactions and impending monsoon droughts. Geophys. Res. Lett., 33, L08711, doi:10.1029/2006GL025811.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi:10.1029/2012GL053777.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015a: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, doi:10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015b: Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Climate, 28, 30933098, doi:10.1175/JCLI-D-14-00810.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16, 16171642, doi:10.1175/1520-0442(2003)016<1617:TAMTTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and M. Latif, 1998: El Niño dynamics. Phys. Today, 51, 3236, doi:10.1063/1.882496.

  • Nyadjro, E., and M. J. McPhaden, 2014: Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J. Geophys. Res. Oceans, 119, 79697986, doi:10.1002/2014JC010380.

    • Search Google Scholar
    • Export Citation
  • Parekh, A., J. S. Chowdary, O. Sayantani, T. S. Fousiya, and C. Gnanaseelan, 2016: Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes. Climate Dyn., 46, 24032422, doi:10.1007/s00382-015-2709-8.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., and Coauthors, 2016: Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error. Climate Dyn., 46, 23052326, doi:10.1007/s00382-015-2703-1.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II, 49, 15491572, doi:10.1016/S0967-0645(01)00158-8.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region and its quantification. Climate Dyn., 43, 11591169, doi:10.1007/s00382-013-1881-y.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J. E., I. Cordery, and A. Sharma, 2005: Integrating ocean subsurface temperatures in statistical ENSO forecasts. J. Climate, 18, 35713586, doi:10.1175/JCLI3477.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Sandeep, S., and R. S. Ajayamohan, 2014: Origin of cold bias over the Arabian Sea in climate models. Sci. Rep., 4, 6403, doi:10.1038/srep06403.

    • Search Google Scholar
    • Export Citation
  • Sayantani, O., and C. Gnanaseelan, 2015: Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Climate Dyn., 44, 24472462, doi:10.1007/s00382-014-2379-y.

    • Search Google Scholar
    • Export Citation
  • Sayantani, O., C. Gnanaseelan, J. S. Chowdary, A. Parekh, and S. Rahul, 2016: Arabian Sea SST evolution during spring to summer transition period and the associated processes in coupled climate models. Int. J. Climatol., 36, 25412554, doi:10.1002/joc.4511.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., S. McGregor, E. van Sebille, A. Ganachaud, J. N. Brown, and A. Santoso, 2016: Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophys. Res. Lett., 43, 16691678, doi:10.1002/2016GL067757.

    • Search Google Scholar
    • Export Citation
  • Swapna, P., and Coauthors, 2015: The IITM Earth System Model: Transformation of a seasonal prediction model to a long-term climate model. Bull. Amer. Meteor. Soc., 96, 13511367, doi:10.1175/BAMS-D-13-00276.1.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., and S. Maksyutov, 2010: A short surface pathway of the subsurface Indonesian Throughflow water from the Java coast associated with upwelling, Ekman transport, and subduction. Int. J. Oceanogr., 2010, 540783, doi:10.1155/2010/540783.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2007: Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J. Climate, 20, 33203343, doi:10.1175/JCLI4162.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S. K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, and W. Wang, 2013: Characteristics of subsurface ocean response to ENSO assessed from simulations with the NCEP Climate Forecast System. J. Climate, 26, 80658083, doi:10.1175/JCLI-D-12-00795.1.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, Q. Ding, F.-F. Jin, X. Fu, and H. J. Kim, 2012: Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dyn., 39, 14131430, doi:10.1007/s00382-011-1164-4.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. Murtugudde, and M. Jochum, 2008: Seasonal influence of Indonesian Throughflow in the southwestern Indian Ocean. J. Phys. Oceanogr., 38, 15291541, doi:10.1175/2007JPO3851.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 101 18
PDF Downloads 169 67 10

Processes Associated with the Tropical Indian Ocean Subsurface Temperature Bias in a Coupled Model

View More View Less
  • 1 Indian Institute of Tropical Meteorology, Pune, India
  • | 2 Indian Institute of Tropical Meteorology, and Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, India
  • | 3 Indian Institute of Tropical Meteorology, Pune, India
Restricted access

Abstract

Subsurface temperature biases in coupled models can seriously impair their capability in generating skillful seasonal forecasts. The National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), coupled model, which is used for seasonal forecast in several countries including India, displays warm (cold) subsurface (surface) temperature bias in the tropical Indian Ocean (TIO), with deeper than observed mixed layer and thermocline. In the model, the maximum warm bias is reported between 150- and 200-m depth. Detailed analysis reveals that the enhanced vertical mixing by strong vertical shear of horizontal currents is primarily responsible for TIO subsurface warming. Weak upper-ocean stability corroborated by surface cold and subsurface warm bias further strengthens the subsurface warm bias in the model. Excess inflow of warm subsurface water from Indonesian Throughflow to the TIO region is partially contributing to the warm bias mainly over the southern TIO region. Over the north Indian Ocean, Ekman convergence and downwelling due to wind stress bias deepen the thermocline, which do favor subsurface warming. Further, upper-ocean meridional and zonal cells are deeper in CFSv2 compared to the Ocean Reanalysis System data manifesting the deeper mixing. This study outlines the need for accurate representation of vertical structure in horizontal currents and associated vertical gradients to simulate subsurface temperatures for skillful seasonal forecasts.

Corresponding author address: J. S. Chowdary, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., Pashan, Pune 411008, India. E-mail: jasti@tropmet.res.in

Abstract

Subsurface temperature biases in coupled models can seriously impair their capability in generating skillful seasonal forecasts. The National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), coupled model, which is used for seasonal forecast in several countries including India, displays warm (cold) subsurface (surface) temperature bias in the tropical Indian Ocean (TIO), with deeper than observed mixed layer and thermocline. In the model, the maximum warm bias is reported between 150- and 200-m depth. Detailed analysis reveals that the enhanced vertical mixing by strong vertical shear of horizontal currents is primarily responsible for TIO subsurface warming. Weak upper-ocean stability corroborated by surface cold and subsurface warm bias further strengthens the subsurface warm bias in the model. Excess inflow of warm subsurface water from Indonesian Throughflow to the TIO region is partially contributing to the warm bias mainly over the southern TIO region. Over the north Indian Ocean, Ekman convergence and downwelling due to wind stress bias deepen the thermocline, which do favor subsurface warming. Further, upper-ocean meridional and zonal cells are deeper in CFSv2 compared to the Ocean Reanalysis System data manifesting the deeper mixing. This study outlines the need for accurate representation of vertical structure in horizontal currents and associated vertical gradients to simulate subsurface temperatures for skillful seasonal forecasts.

Corresponding author address: J. S. Chowdary, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., Pashan, Pune 411008, India. E-mail: jasti@tropmet.res.in
Save